Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 68

Result Self Studies

Relations and Functions Test - 68
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The numbers system which uses alphabets as well as numbers is-
    Solution
    HEXADECIMAL NUMBERS SYSTEM
  • Question 2
    1 / -0
    Number of one-one functions from A to B where $$n(A)=4, n(B)=5$$.
    Solution
    $$n(A)=4$$ and $$n(B)=5$$

    For one-one mapping
    4 elements can be selected out of 5 elements of set B in $${}^5C_4$$ ways
    and then those 4 selected elements can be mapped with 4 elements of set A in $$4!$$ ways.

    Number of one-one mapping from $$A$$ to $$B$$ $$={}^5C_4\times4!={}^5P_4=\dfrac{5!}{(5-4)!}=5!=120$$
  • Question 3
    1 / -0
    If is a binary operation such that $$a * b = a^2 + b^2$$ then $$3 * 5$$ is 
    Solution
    $$a \star b = {a}^{2} + {b}^{2} \quad \left( \text{Given} \right)$$
    Therefore,
    $$3 \star 5 = {3}^{2} + {5}^{2} = 9 + 25  = 34$$
    Hence the correct answer is $$34$$.
  • Question 4
    1 / -0
    If a binary operation is defined $$a\star b=a^b$$ then 2$$\star 2$$ is equal to:
    Solution
    $$a \star b = {a}^{b} \quad \left( \text{Given} \right)$$
    Therefore,
    $$2 \star 2 = {2}^{2} = 4$$
    Hence the correct answer is $$4$$.
  • Question 5
    1 / -0
    Let $$f(x)=x^ {135}+x^ {125}-x^ {115}+x^ {5}+1$$. If $$f(x)$$ divided by $$x^ {3}-x$$, then the remainder is some function of $$x$$ say $$g(x)$$. Then $$g(x)$$ is an:-
    Solution



  • Question 6
    1 / -0
    If $$  f : R \rightarrow R  $$ be given by $$  f(x)=\left(3-x^{3}\right)^{\dfrac{1}{3}},  $$ then $$fof(x)$$ is
    Solution
    Given, $$  f(x)=\left(3-x^{3}\right)^{\dfrac{1}{3}}  $$.
    Now, 
    $$fof(x)$$
    $$=f[f(x)]$$

    $$ =\left(3-[f(x)]^{3}\right)^{\dfrac{1}{3}},  $$

    $$ =\left(3-[(3-x^3)^{\dfrac{1}{3}}]^{3}\right)^{\dfrac{1}{3}},  $$

    $$ =\left(3-[(3-x^3)]\right)^{\dfrac{1}{3}},  $$

    $$=[x^3]^{\dfrac{1}{3}}$$

    $$=x$$.
  • Question 7
    1 / -0
    Let : $$R\rightarrow R$$ defined as $$f\left( x \right) =\dfrac { x\left( x+1 \right) \left( { x }^{ 4 }+1 \right) +{ 2x }^{ 4 }+{ x }^{ 2 }+2 }{ { x }^{ 2 }+x+1 } $$
  • Question 8
    1 / -0
    Let f : $$R\rightarrow R$$ be a function defined by f(x) = $${ x }^{ 3 }+{ x }^{ 2 }+3x+sin\times .$$ Then f is.
    Solution
    $$f(x)=x^{3}+x^{2}+3 x+\sin x$$
    $$Suppose$$
    $$f(x_{1})=f(x_{2})$$
    $$x_{1}^{3}+x_{1}^{2}+3 x_{1}+\sin x_{1}=x_{2}+x_{2}+\sin x-\sin x_{2}$$
    $$Equating\;above\;equations\;to \;0$$
    $$x_{1}^{3}+x_{1}^{2}+3 x_{1}+\sin x_{1}=x_{2}+x_{2}+\sin x-\sin x_{2}=0$$
    $$Solving\;them$$
    $$It\; will\; not\; prove\; that$$
    $$x_{1}=x_{2}$$
    $$So,\;f(x)\;is\;one-one$$
    $$Range\;f(x)=Real$$
    $$Co-domain\;f(x)=Real$$
    $$Range=Co-domain$$
    $$Hence,\; f(x) \;is \;onto$$
    $$So,\;option\; C \;is\;correct.$$

  • Question 9
    1 / -0
    A function $$f$$ from the set of natural numbers to integers defined by $$f(n)=\begin{cases} \cfrac { n-1 }{ 2 } ,\quad \text{when n is odd} \\ -\cfrac { n }{ 2 } ,\quad \text{when n is even} \end{cases}$$  is
    Solution
    $$one-one$$ test of $$f:$$
    Let $$x_1$$ and $$x_2$$ be any two elements in the domain $$(N).$$
    $$Case\,I:$$ When both $$x_1$$ and $$x_2$$ are even.

    Let $$f(x_1)=f(x_2)$$
    $$\Rightarrow$$  $$\dfrac{-x_1}{2}=\dfrac{x_2}{2}$$
    $$\Rightarrow$$  $$-x_1=-x_2$$
    $$\Rightarrow$$  $$x_1=x_2$$

    $$Case\,II:$$ When both $$x_1$$ and $$x_2$$ are odd.

    Let $$f(x_1)=f(x_2)$$
    $$\Rightarrow$$  $$\dfrac{x_1-1}{2}=\dfrac{x_2-1}{2}$$
    $$\Rightarrow$$  $$x_1-1=x_2-1$$
    $$\Rightarrow$$  $$x_1=x_2$$

    $$Case\,III:$$ When $$x_1$$ be even and $$x_2$$ be odd.

    Then, $$f(x_1)=\dfrac{-x_1}{2}$$ and $$f(x_2)=\dfrac{x_2-1}{2}$$
    Then clearly, 
    $$\Rightarrow$$  $$x_1\ne x_2$$
    $$\Rightarrow$$  $$f(x_1)\ne f(x_2)$$
    From, all the cases, we can say that, $$f$$ is one-one.

    $$onto$$ test of $$f:$$
    Co-domain of $$f=Z=\{....,-3,-2,-1,0,1,2,3,...\}$$
    Range of $$f=\left\{...,\dfrac{-2-1}{2},\dfrac{-(-2)}{2},\dfrac{-1-1}{2},\dfrac{0}{2},\dfrac{1-1}{2},\dfrac{-2}{2},\dfrac{3-1}{2},...\right\}$$
    Range of $$f=\{...,-2,1,-1,0,0,-1,1,..\}$$
    $$\Rightarrow$$  Co-domain of $$f=$$ Range of $$f$$
    $$\therefore$$  $$f$$ is onto.
  • Question 10
    1 / -0
    Let $$f:[2,\infty )\rightarrow X$$ be defined by $$f(x)=4x-{x}^{2}$$. Then, $$f$$ is invertible, if $$X=$$
    Solution
    Since, $$f$$ is invertible, range of $$f=$$ Co-domain of $$f=X$$
    So, we need to find the range of $$f$$ to find $$X.$$
    Foe finding the range, let
    $$f(x)=y$$
    $$\Rightarrow$$  $$4x-x^2=y$$
    $$\Rightarrow$$  $$x^2-4x=-y$$
    $$\Rightarrow$$  $$x^2-4x+4=4-y$$             [ Adding $$4$$ on both sides ]
    $$\Rightarrow$$  $$(x-2)^2=4-y$$
    $$\Rightarrow$$  $$x-2=\pm\sqrt{4-y}$$
    $$\Rightarrow$$  $$x=2\pm\sqrt{4-y}$$
    This is defined only when,
    $$4-y\ge 0$$
    $$\Rightarrow$$  $$y\le 4$$
    $$X=$$ Range of $$f=(-\infty , 4]$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now