Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 69

Result Self Studies

Relations and Functions Test - 69
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$g(x)={ x }^{ 2 }+x-2$$ and $$\cfrac { 1 }{ 2 } (g\circ f(x))=2{ x }^{ 2 }-5x+2$$, then $$f(x)$$ is equal to
    Solution
    We will solve this problem by the trial and error method.
    Let us check option $$A$$ first.
    If $$f(x)=2x-3$$
    $$g(x)=x^2+x-2$$                   [ Given ]
    $$\Rightarrow$$  $$\dfrac{1}{2}(g\circ f)(x)=g[f(x)]$$
                                 $$=\dfrac{1}{2}g(2x-3)$$

                                 $$=\dfrac{1}{2}[(2x-3)^2+(2x-3)-2]$$

                                 $$=\dfrac{1}{2}[4x^2+9-12x+2x-3-2]$$

                                 $$=\dfrac{1}{2}[4x^2-10x+4]$$
                                 $$=2x^2-5x+2$$
    The given condition is satisfied by $$A.$$

  • Question 2
    1 / -0
    Let $$f : x \rightarrow y $$ be such that $$f(1) = 2$$ and $$f(x + y) = f(x) f(y)$$ for all natural numbers x and y. If $$\displaystyle \sum_{k= 1}^n f(a + k) = 16 (2^n - 1)$$ , then a is equal to 
    Solution
    We have,
    $$f(1)=2$$ and $$f(x+y)=f(x).f(y)$$
    Now, $$f(2)=f(1+1)=f(1).f(1)=2.2=2^2$$
    $$f(3)=f(2+1)+f(2).f(1)=2^2.2=2^3$$
    and so on
    $$\therefore f(x)=2^n$$......(i)
    Now, we have
    $$\displaystyle \sum^n_{k=1}f(a+k)=16(2^n-1)$$
    $$\Rightarrow f(a+1)+f(a+2)+----f(a+n)=16(2^n-1)$$
    $$\Rightarrow f(a).f(1)+f(a).f(2)+-----f(a).f(n)=16(2^n-1)$$
    $$\Rightarrow f(a)=[f(1)+f(2)+---f(n)]=16(2^n-1)$$
    $$\Rightarrow f(a)[2+2^2+----+2^n]=16(2^n-1)$$

    $$\Rightarrow f(a).[2\dfrac{(2^n-1)}{2-1}]=16(2^n-1)$$
    $$\Rightarrow 2f(a).(2^n-1)=16.(2^n-1)\Rightarrow f(a)=8$$
    $$\Rightarrow 2^a=8[\because f(x)=2^n\Rightarrow f(a)=2^a]$$
    $$\Rightarrow 2^a=2^3=a=3$$
  • Question 3
    1 / -0
    If $$f(x) = \dfrac{x+1}{x-1}$$, then the valueof $$f(f(x))$$ is equal to
    Solution
    $$f(x)=\dfrac{x+1}{x-1}$$

    $$\therefore f(f(x))=f\left(\dfrac{x+1}{x-1}\right)$$

    $$\dfrac{\dfrac{x+1}{x-1}+1}{\dfrac{x+1}{x-1}-1}$$

    $$=\dfrac{x+1+x-1}{x+1-x+1}$$

    $$=\dfrac{2x}{2}$$

    $$=x$$
  • Question 4
    1 / -0
    If $$f(x)=\dfrac{(4x+3)}{(6x-4)}, x\neq \dfrac{2}{3}$$ then $$(f o f)(x)=?$$
    Solution

  • Question 5
    1 / -0
    If $$f(x)=\sqrt[3]{3-x^3}$$ then $$(f o f)(x)=?$$
    Solution

  • Question 6
    1 / -0
    Let $$ f : R \rightarrow R : f(x) =x +1 $$ and $$ g : R \rightarrow R : g(x) = 2x -3 $$.
    Find $$(f +g) (x)$$.
    Solution
    Given ,
    $$f(x)=x+1,g(x)=2x-3$$

    $$\implies (f+g)x=f(x)+g(x)=x+1+2x-3=3x-2$$
  • Question 7
    1 / -0
    If $$\displaystyle f(x) = | x - 2 |$$ and $$ g(x) = fof\,(x) $$ , then for $$ x > 20 , {g}\,'(x) = $$ 

    Solution

  • Question 8
    1 / -0
    If $$\displaystyle {f}'(x) = g\,(x) $$ and $$\displaystyle {g}'(x) = - f\,(x) $$ for all $$ x $$ and $$ f\,(2) = 4 = {f}'(2) $$ then $$\displaystyle f^{2}\,(19) + g^{2} \,(19) $$ is 
    Solution

  • Question 9
    1 / -0
    Let $$f(n)$$ denote the number of different ways in which the positive integer $$n$$ can be expressed as the sum of $$1s$$ and $$2s$$. For example, $$f(4) = 5$$, since $$4 = 2 + 2 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 1 + 1 + 1 + 1$$. Note that order of $$1s$$ and $$2s$$ is important.
    $$f : N\rightarrow N$$ is
    Solution
    $$6 = 0(2) + 6(1) = 1(2) + 4(1) = 2(2) + 2(1) = 3(2) + 0(1)$$

    Number of $$2s$$Number of $$1s$$Number of permutations
    $$0$$$$6$$$$1$$
    $$1$$$$4$$$$\dfrac {5!}{4!} = 5$$
    $$2$$$$2$$$$\dfrac {4!}{2!2!} = 6$$
    $$3$$$$0$$$$\dfrac {3!}{3!} = 1$$
    $$Total = 13$$

    $$\therefore f(6) = 13$$

    Now, $$f(f(6)) = f(13)$$
    Number of $$1s$$Number of $$2s$$Number of permutations
    $$13$$$$0$$$$1$$
    $$11$$$$1$$$$\dfrac {12!}{11!} = 12$$
    $$9$$$$2$$$$\dfrac {11!}{9!2!} = 55$$
    $$7$$$$3$$$$\dfrac {10!}{7!3!} = 120$$
    $$5$$$$4$$$$\dfrac {9!}{5!4!} = 126$$
    $$3$$$$5$$$$\dfrac {8!}{3!5!} = 56$$
    $$1$$$$6$$$$\dfrac {7!}{6!} = 7$$
    $$Total = 377$$

    $$\therefore f(f(6)) = f(13) = 377$$

    $$f(1) = 1(1)$$

    $$f(2) = 2 (1, 1$$ or $$2)$$

    $$f(3) = 3(1, 1, 1\ or\ 2, 1\ or\ 1, 2)$$

    $$f(4) = 5$$ (explained in the paragraph)

    By taking higher value of $$n$$ in $$f(n)$$, we always get more value of $$f(n)$$. Hence, $$f(x)$$ is one-one. Clearly, $$f(x)$$ is into.
  • Question 10
    1 / -0
    let $$f(x) = sin^2 x/2 + cos ^2 x/2 $$ and $$g(x) = sec^2 x - tan ^2 x.$$ The two functions are equal over the set
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now