Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 71

Result Self Studies

Relations and Functions Test - 71
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    From $$ ] \dfrac{- \pi}{2} , \dfrac{- \pi}{2}[ $$ which of the following is one - one onto function defined in R
  • Question 2
    1 / -0
    Which of the following in one -one function defined from R to R
  • Question 3
    1 / -0
    Subtraction is an operation on $$Z$$, which is 
    Solution
    Let $$a, b \in z$$
    Commutativity: As we know, 
    $$a-b \neq b-a$$
    Associativity : $$(a-b)-c\neq a-(b-c)$$
    So, option (c) is correct.
  • Question 4
    1 / -0
    Which of the following functions is not injective ?
    Solution
    A:
    $$f:R\rightarrow R, f(x)=2x+7$$
    $$\dfrac{dy}{dx}=2>0     \rightarrow$$ one-one (Injective)

    B: 
    $$f:[0,\pi]\rightarrow [-1,1],f(x)=\cos x$$
    $$\dfrac{dy}{dx}=\sin x=(+ve)       \rightarrow$$ one-one (Injective)

    C:
    $$f: \left[-\dfrac{\pi}2, \dfrac{\pi}2\right], f(x) = 2\sin x+3$$
    $$\dfrac{dy}{dx}= 2\cos x=+ve      \rightarrow$$ one-one (Injective)

    D:
    $$f:R\rightarrow [-1,1],f(x)=\sin x$$
    $$\dfrac{dy}{dx}=\cos x=+ve$$ & $$-ve      \rightarrow$$ many one 

    Hence, option D.
  • Question 5
    1 / -0
    Let $$\displaystyle \mathrm{f}:\mathrm{R}\rightarrow \left[0,\frac{\pi}{2}\right)$$ be defined by $$\mathrm{f}(\mathrm{x})=\mathrm{t}\mathrm{a}\mathrm{n}^{-1}(\mathrm{x}^{2}+\mathrm{x}+\mathrm{a})$$. Then the set of values of '$$\mathrm{a}$$' for which $$\mathrm{f}$$ is onto is
    Solution
    $$f(x)=\tan^{-1}(x^2+x+a)$$
    For, $$f(x)$$ to be onto, codomain should be exactly equal to range.
    That is, range of funnction $$ \displaystyle f(x) =  \left[ 0,\frac { \pi  }{ 2 }  \right)  $$
    So, $$0\leqslant \tan^{-1}(x^2+x+a)<\dfrac{\pi}{2}$$
    Now, $$ \displaystyle { x }^{ 2 }+x+a={ \left( x+\dfrac { 1 }{ 2 }  \right)  }^{ 2 }+a-\dfrac { 1 }{ 4 } $$
    The above expression will take all real values from $$ \left[0, \infty \right)$$, only if $$ \displaystyle a = \dfrac{1}{4}$$
    Hence, only for $$ a= \dfrac{1}{4}$$, the function is onto.
  • Question 6
    1 / -0
    Let $$\displaystyle {f}({x})=\frac{{a}{x}+{b}}{{c}{x}+{d}}$$, then $$fof(x)={x}$$, provided
    Solution
    Given,

    $$f(x)=\dfrac{ax+b}{cx+d}$$

    $$f(f(x))=\dfrac{a\left ( \dfrac{ax+b}{cx+d}\right )+b}{c\left ( \dfrac{ax+b}{cx+d} \right )+d}=x$$

    $$=\dfrac{a(ax+b)+b(cx+d)}{c(ax+b)+d(cx+d)}=x$$

    $$a(ax+b)+b(cx+d)=x[c(ax+b)+d(cx+d)]$$

    $$(a^2+bc)x+(ab+bd)=(ac+cd)x^2+(bc+d^2)x$$

    matching the coefficients of $$x$$, we get,

    $$a^2+bc=bc+d^2$$

    $$a^2=d^2$$

    $$d=\pm a$$

    matching the coefficients of $$x^2$$, we get,

    $$ac+cd=0$$

    $$\therefore d=-a$$

    matching constant terms, we get,

    $$ab+bd=0$$

    $$d=-a$$
  • Question 7
    1 / -0

    Let $$\displaystyle \mathrm{f}(\mathrm{x})=\frac{\alpha \mathrm{x}}{\mathrm{x}+1}$$ , $$\mathrm{x}\neq 1$$. then for what value of $$\alpha$$ is $$\mathrm{f}(\mathrm{f}(\mathrm{x}))=\mathrm{x}$$
    Solution

    $$f\left( {\frac{{\alpha x}}{{x + 1}}} \right) = \frac{{\alpha \left( {\frac{{\alpha x}}{{x + 1}}} \right)}}{{\frac{{\alpha x}}{{x + 1}} + 1}}$$

    $$ = \frac{{{\alpha ^2}x}}{{\alpha x + x + 1}}$$

    As, it is given that $$f\left( x \right) = x$$, so,

    $$\frac{{{\alpha ^2}x}}{{\alpha x + x + 1}} = x$$

    $${\alpha ^2}x = x\left( {\alpha x + x + 1} \right)$$

    $${\alpha ^2} = \alpha x + x + 1$$

    $${\alpha ^2} - \alpha x - \left( {x + 1} \right) = 0$$

    $${\alpha ^2} - \alpha x - \alpha  + \alpha  - \left( {x + 1} \right) = 0$$

    $$\alpha \left[ {\alpha  - \left( {x + 1} \right)} \right] + 1\left[ {\alpha  - \left( {x + 1} \right)} \right] = 0$$

    $$\left( {\alpha  + 1} \right)\left[ {\alpha  - \left( {x + 1} \right)} \right] = 0$$

    $$\alpha  + 1 = 0\;,\;\alpha  - \left( {x + 1} \right) = 0$$

    $$\alpha  =  - 1\;,\;\alpha  = x + 1$$

    Therefore, the value of $$\alpha $$ is $$ - 1$$.

  • Question 8
    1 / -0
    If $$n \geq 2$$ then the number of surjections that can be defined from $$\{1, 2, 3, .......  n\}$$ onto $$\{1, 2\}$$ is
    Solution
    Let $$A=\{1,2,3,...,n\} $$ and $$B=\{1,2\} $$ . 
    Therefore, total number of mappings from $$A$$ to $$B$$ is $$2^n$$ of which two functions $$f(x)=1$$ for all $$x\in A$$ and $$g(x)=2$$ for all $$x\in A$$ are not surjective.
    Thus, the total number of surjections from $$A$$ to $$B$$ is $$2^n-2$$.
  • Question 9
    1 / -0
    If $$f\left( x \right)=\sqrt { 3\left| x \right| -x-2 } $$ and $$g(x)=\sin(x)$$, then the domain of the definition of $$f\circ g\left( x \right) $$ is
    Solution
    We have $$\displaystyle f\left( x \right) =\sqrt { 3\left| x \right| -x-2 } $$ and $$g\left( x \right) =\sin { x } $$

    $$\therefore f\circ g\left( x \right) =\sqrt { 3\left| \sin { x }  \right| -\sin { x } -2 } $$ which is defined, 
    if $$3\left| \sin { x }  \right| -\sin { x } -2\ge 0$$

    If $$\sin { x } >0,$$ then $$2\sin { x } -2\ge 0\quad $$
    $$\Rightarrow \sin { x } \ge 1$$
    $$\displaystyle \Rightarrow \sin { x } =1\Rightarrow x=\frac { \pi  }{ 2 } $$

    If $$\sin { x } <0,$$ then $$\displaystyle -4\sin { x } -2\ge 0\Rightarrow -1\le -\frac { 1 }{ 2 } $$

    $$\displaystyle \therefore x\in \left( 2n\pi +\frac { 7\pi  }{ 6 } ,2n\pi +\frac { 11\pi  }{ 6 }  \right) \bigcup _{ n,m\in I }^{  }{ \left( 2n\pi +\frac { \pi  }{ 2 }  \right)  } n,m\in I$$ 
  • Question 10
    1 / -0
    If $$f:R\rightarrow \left [\dfrac {\pi}{6}, \dfrac {\pi}{2}\right ), f(x)=\sin^{-1}\left (\dfrac {x^2-a}{x^2+1}\right )$$ is a onto function, then set of values of $$a$$ is
    Solution
    Given, $$f(x)$$ is onto.
    $$\therefore \displaystyle \frac {\pi}{6}\leq \sin^{-1}\left (\frac {-x^2-a}{x^2+1}\right ) < \frac {\pi}{2}$$
    $$\Rightarrow \displaystyle \frac {1}{2}\leq \frac {x^2-a}{x^2+1} < 1$$
    $$\Rightarrow \displaystyle \frac {1}{2}\leq 1-\frac {(a+1)}{x^2+1} < 1, \forall x\epsilon R $$
    $$\Rightarrow a+1 > 0$$
    $$\Rightarrow a\in (-1, \infty)$$
    Hence, (c) is the correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now