Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 72

Result Self Studies

Relations and Functions Test - 72
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f (x) = x + 2, g (x) = 2 x +3,$$ then find gof
  • Question 2
    1 / -0
    Let $$\displaystyle a > 1$$ be a real number and $$\displaystyle f\left ( x \right ) = \log _{a} x^{2}$$ for $$\displaystyle x > 0$$. If $$\displaystyle f^{-1}$$ is the inverse function of $$f$$ and $$b$$ and $$c$$ are real numbers then $$\displaystyle f^{-1} \left ( b+c \right )$$ is equal to
    Solution
    $$y=\log_{a}(x^2)$$
    $$a^{y}=x^{2}$$
    $$a^{y/2}=x$$
    Hence $$f^{-1}=a^{x/2}$$
    $$f^{-1}(b+c)$$
    $$=a^{(b+c)/2}$$
    $$=a^{b/2}a^{c/2}$$
    $$=f^{-1}(b)f^{-1}(c)$$
    Hence, option 'A' is correct.
  • Question 3
    1 / -0
    Which one of the following functions is not one-one?
    Solution
    $$ x(x-1)$$ is not a one -one function in whole $$R$$.
    This function has a minima at $$x=\dfrac12$$, therefore repeats value after $$x=\dfrac12$$.
    We can also see that $$x(x-1) = 0$$ for $$x=0,1$$ and therefore $$e^{x(x-1)} =1$$ for both $$x=0 \&\ 1$$, which rules it out as a one to one function.

  • Question 4
    1 / -0
    $$f(x)=x^3+3x^2+4x+b \sin x+c \cos x, \forall x\in R$$ is a one-one function, then the value of $$b^2+c^2$$ is
    Solution
    Here, $$f(x)=x^3+3x^2+4x+b \sin x+c \cos x$$
    $$f'(x)=3x^2+6x+4+b \cos x-c \sin x$$
    Now, for $$f(x)$$ to be one-one, the only possibility is
    $$f'(x)\geq 0, \forall x\in R$$
    ie, $$3x^2+6x+4+b \cos x-c \sin x\geq 0, \forall x\in R$$
    ie, $$3x^2+6x+4 \geq c \sin x-b \cos x, \forall x\in R$$
    As we are approximating lower bound for the function by a number instead of a function, hence we chose the number.
    ie, $$3x^2+6x+4 \geq \sqrt {b^2+c^2}, \forall x\in R$$
    ie, $$\sqrt {b^2+c^2} \leq 3(x^2+2x+1)+1,\forall x\in R$$
    $$\sqrt {b^2+c^2} \leq 3(x+1)^2+1, \forall x\in R$$
    $$\sqrt {b^2+c^2} \leq 1, \forall x \in R$$
    $$\Rightarrow b^2+c^2 \leq 1, \forall x \in R$$
    Hence, (c) is the correct answer. 
  • Question 5
    1 / -0
    If $$f(x)=2x+|x|, g(x)=\dfrac {1}{3}(2x-|x|)$$ and $$h(x)=f(g(x))$$, then domain of $$\sin^{-1}\underset {\text {n times}}{\underbrace {(h(h(h(h.....h(x).....))))}}$$ is
    Solution
    Since, $$f(x)=\left\{\begin{matrix}2x+x, & x\geq 0\\ 2x-x, & x < 0\end{matrix}\right.=\left\{\begin{matrix}3x, & x\geq 0\\ x, & x < 0\end{matrix}\right.$$
    and $$g(x)=\dfrac {1}{3}\left\{\begin{matrix}2x-x, & x\geq 0\\ 2x+x, & x < 0\end{matrix}\right.=\left\{\begin{matrix}\dfrac {x}{3}, & x\geq 0\\ x, & x < 0\end{matrix}\right.$$
    $$\therefore f(g(x))=\left\{\begin{matrix}3\left (\dfrac {x}{3} \right ) & x\geq0\\ x & x < 0\end{matrix}\right.$$
    $$\Rightarrow f(g(x))=x, \forall x\in R$$
    $$\therefore h(x)=x$$
    $$\Rightarrow \sin^{-1} (h(h(h....h(x)....)))=\sin^{-1}x$$
    $$\therefore$$ Domain of $$\sin^{-1} (h(h(h(h.....h(x)....))))$$ is $$[-1, 1]$$
    Hence, A is the correct answer.
  • Question 6
    1 / -0
    Which of the following functions is/are injective map(s) ?
    Solution
    The function $$f(x)=x^2 + 2, x \in (-\infty, \infty)$$ is not injective as 
    $$f(1)=f(-1) $$ but $$1 \neq -1.$$

    The function $$f(x)=(x-4)(x-5), x \in (-\infty, \infty)$$ is not one-one as $$f(4)=f(5)$$ but $$4 \neq 5.$$

    The functin $$f(x)=\dfrac{4x^2 + 3x -5}{4 + 3x - 5x^2}, x \in (-\infty,\infty)$$ is also not injective as $$f(1)=f(-1)$$ but $$1 \neq -1$$.

    For the function , $$f(x)=-|x+2|, x\in [-2,\infty)$$

    Let $$f(x)=f(y),x,y \in [-2,\infty) \Rightarrow |x+2| = |y+2| $$
    $$\Rightarrow x+2 = y+2$$
    $$\Rightarrow x=y$$
    So , $$f$$ is an injective map.
  • Question 7
    1 / -0
    The function $$f$$ is one to one and the sum of all the intercepts of the graph is $$5$$. The sum of all the intercept of the graph $$\displaystyle y = f^{-1} \left ( x \right )$$ is
    Solution
    Since the function $$f$$ is one-one there exist only one $$x$$-intercept and only one $$y$$-intercept for the function.
    Let $$a$$ be the $$y$$-intercept of the function $$f$$. Hence $$f\left( 0 \right) = a$$, but then we have $${f^{ - 1}}\left( a \right) = 0$$. 
    Therefore $$a$$ is an $$x$$-intercept of the function $${f^{ - 1}}$$.
    Similarly the $$x$$-intercept of the function$$f$$ is $$y$$-intercept of the function $${f^{ - 1}}$$, say $$b$$.
    Hence the sum of the intercepts of the function $$f$$ is same as the sum of the intercepts of the function $${f^{ - 1}}$$ which is equal to 5.

  • Question 8
    1 / -0
    If $$\displaystyle f \left ( x \right ) = px + q$$ and $$\displaystyle f \left ( f\left ( f\left ( x \right ) \right ) \right ) = 8x + 21$$, where $$p$$ and $$q$$ are real numbers, the $$ p + q$$ equals
    Solution
    $$f(x)=px+q$$
    $$f(f(x))=p(px+q)+q$$
    $$=p^2x+q(p+1)$$
    $$f(f(f(x)))=p(p^2x+q(p+1))+q$$
    $$=p^{3}x+q(p(p+1)+1)$$
    $$=8x+21$$
    By comparing coefficients, we get
    $$p^{3}=8$$
    $$p=2$$
    And $$q(2(3)+1)=21$$
    $$7q=21$$
    $$q=3$$
    Hence
    $$f(x)=2x+3$$
    Therefore, $$p+q=2+3=5$$
  • Question 9
    1 / -0
    Let $$f\left( x \right) =\left\{ \begin{matrix} 1+|x|,\; x<-1 \\ \left[ x \right] ,\; x\ge -1 \end{matrix} \right. $$ where $$[\cdot]$$ denotes the greatest integer function. Then $$\displaystyle f\left \{f(-2.3) \right\}$$ is equal to 
    Solution
    $$f\left( x \right) =\left\{ \begin{matrix} 1+|x|,\; x<-1 \\ \left[ x \right] ,\; x\ge -1 \end{matrix} \right. $$
    .

    $$f\left( -2.3 \right) =1+\left| -2.3 \right| =3.3\dots ( \because x < -1$$) 
    .

    hence, $$f\left( f\left( -2.3 \right)  \right) =f\left( 3.3 \right) =\left[ 3.3 \right] =3$$

    $$f\left( f\left( -2.3 \right)  \right)=3$$
  • Question 10
    1 / -0
    The inverse function of the function $$\displaystyle f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$$ is 
    Solution
    $$y=\dfrac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$$

    $$y=\dfrac{e^{2x}-1}{e^{2x}+1}$$

    $$y\left(e^{2x}+1\right)=e^{2x}-1$$

    $$\Rightarrow e^{2x}\left(y\right)+y=e^{2x}-1$$

    $$\Rightarrow y+1=e^{2x}\left(1-y\right)$$

    $$e^{2x}=\left(\dfrac{1+y}{1-y}\right)$$

    Taking logarithm on both the sides, we get

    $$2x=\log\left(\dfrac{1+y}{1-y}\right)$$

    $$x=\dfrac{1}{2}\log\left(\dfrac{1+y}{1-y}\right)$$

    Hence $$f^{-1}=\dfrac{1}{2}\log\left(\dfrac{1+x}{1-x}\right)$$

    Alternatively, $$f\left(x\right)$$ is $$\tan h\left(x\right)$$

    So, it's inverse will be $$\dfrac{1}{2}\log\left(\dfrac{1+x}{1-x}\right)$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now