Self Studies
Selfstudy
Selfstudy

Relations and F...

TIME LEFT -
  • Question 1
    1 / -0

    $$K(x)$$ is a function such that $$K(f(x))=a+b+c+d$$,
    Where,
    $$a=\begin{cases}
    0 & \text{ if f(x) is even}  \\ 
    -1 & \text{ if f(x) is odd} \\ 
    2 & \text{ if f(x) is neither even nor odd} 
    \end{cases}$$
    $$b=\begin{cases}
    3 & \text{ if  f(x) is periodic} \\ 
    4 & \text{  if  f(x) is  aperiodic}
    \end{cases}$$
    $$c=\begin{cases}
    5 & \text{ if  f(x) is  one one} \\ 
    6 & \text{  if  f(x) is many one}
    \end{cases}$$
    $$d=\begin{cases}
    7 & \text{ if  f(x) is onto} \\ 
    8 & \text{  if  f(x) is into}
    \end{cases}$$ 
    $$h:R\rightarrow R,h(x)=\left ( \displaystyle \frac{e^{2x}+e^{x}+1}{e^{2x}-e^{x}+1} \right )$$ 

    On the basis of above information, answer the following questions.$$K(\phi(x)) $$

  • Question 2
    1 / -0

    Let $$f:{x, y, z}\rightarrow (a, b, c)$$ be a one-one function. It is known that only one of the following statements is true:

    (i) $$f(x)\neq b$$
    (ii)$$f(y)=b$$
    (iii)$$f(z)\neq  a$$

  • Question 3
    1 / -0

    If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$ are given by $$f(x)=|x|$$ and $$g(x)=[x]$$ for each $$x\in R,$$ then $$\left\{ x\in R:g\left( f\left( x \right) \right) \le f\left( g\left( x \right) \right)  \right\} =$$

  • Question 4
    1 / -0

    Let $$\displaystyle f:\left[-\frac{\pi}{3},\frac{2\pi}{3}\right]\rightarrow [0,4]$$ be a function defined by $$\displaystyle f(x)=\sqrt 3 \sin x-\cos x+2$$ then $$\displaystyle f^{-1}(x)$$ equals

  • Question 5
    1 / -0

    Suppose $$\displaystyle  f\left ( x \right )=\left ( x+1 \right )^{2}$$ for $$\displaystyle x\geq -1$$. If $$\displaystyle g(x)$$ is the function whose graph is the reflection of the graph of $$\displaystyle f(x)$$ with respect to the line $$y=x $$, then $$\displaystyle g(x)$$ is equal to

  • Question 6
    1 / -0

    If $$\displaystyle f\left ( x \right )= \frac{3x+2}{5x-3}$$ , then

  • Question 7
    1 / -0

    If $$\displaystyle f\left ( x \right )+f\left ( \dfrac1x \right )=0,\; f(e)=1; g\left ( x \right )=f^{-1}\left ( x \right )$$ then $$\displaystyle g{}'\left ( x \right )$$ equals

  • Question 8
    1 / -0

    If $$f:[1,\infty )\rightarrow [2,\infty )$$ is given by $$\displaystyle f\left( x \right)=x+\frac { 1 }{ x } ,$$ then $$f^{-1}(x)$$ equals

  • Question 9
    1 / -0

    Let $$\displaystyle f\left ( x \right )=\frac{ax^{2}+2x+1}{2x^{2}-2x+1}$$, the value of $$a$$ for which $$\displaystyle f:R\rightarrow \left [ -1,2 \right ]$$ is onto , is

  • Question 10
    1 / -0

    The total number of injective mappings from a set with $$m$$ elements to a set with $$n$$ elements, $$m \leq n $$ is 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now