Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 74

Result Self Studies

Relations and Functions Test - 74
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the inverse of the linear function $$f$$.
    $$f(x)=3x-2$$
    Solution
    Let $$y=f(x)=3x-2$$ and now solve for $$x$$ to find the inverse of the given function.
    $$3x=y+2$$
    $$x=\dfrac {(y+2)}{3}$$
    Therefore, the inverse of the function in terms of $$x$$ is $$\dfrac {(x+2)}{3}$$.
  • Question 2
    1 / -0
    Let $$f(x) = \begin{cases} 1+x, & 0\leq x\leq 2 \\ 3-x, & 2<x\leq 3 \end{cases}$$, then find $$(fof)(x)$$
    Solution
    Given $$f(x) = \begin{cases} 1+x, & 0\leq x\leq 2 \\ 3-x, & 2<x\leq 3 \end{cases}$$

    Case I: When $$0\leq x\leq 2$$
    $$(fof)(x)=f[f(x)]=f(1+x)$$
    Since,$$0\leq x\leq 2$$
    $$\Rightarrow 1\leq 1+x\leq 3$$
    $$(fof)(x)=1+1+x=2+x$$ when $$1\leq 1+x\leq 2$$
    $$\Rightarrow (fof)(x)=2+x$$ when $$0\leq x\leq 1$$
    And $$(fof)(x)=3-(1+x)=2-x $$when $$2<1+x\leq 3$$
    $$\Rightarrow (fof)(x)=2-x$$ when $$1<x \le 2$$

    Case I: When $$2< x\leq 3$$
    $$(fof)(x)=f[f(x)]=f(3-x)$$
    Since,$$0\leq x\leq 2$$
    $$\Rightarrow -2< -x \leq 0$$
    $$\Rightarrow 1< 3-x \le 3$$
    $$(fof)(x)=1+3-x=4-x$$ when $$1\le  3-x\leq 2$$
    $$\Rightarrow (fof)(x)=4-x$$ when $$1\le x\leq 2$$
    And $$(fof)(x)=3-(3-x)=x $$when $$2<3-x\leq 3$$
    $$\Rightarrow (fof)(x)=x$$ when $$0<x \le 1$$
  • Question 3
    1 / -0
    $$f(x)\, =\, -1\, + |x\, -\, 2|, \, 0\, \leq\, x\, \leq\, 4$$
    $$g(x)\, =\, 2\, -\, |x|,\, -1\, \leq\, x\, \leq\, 3$$
    Which of the following is true
    Solution
    $$f(x)\, =\, -1\, + |x\, -\, 2|, \, 0\, \leq\, x\, \leq\, 4$$
    $$g(x)\, =\, 2\, -\, |x|,\, -1\, \leq\, x\, \leq\, 3$$

    $$ g(f(x))=2-|-1+|x-2||,$$

    $$ gof(x)=\begin{cases} 2-[2-x-1] & 0\, \leq \, x\, <\, 1 \\ 2+[2-x-1], & 1\, \leq \, x\, \leq \, 2 \\ 2+[x-2-1], & 2\, <\, x\, \leq \, 3 \\ 2-[x-2-1], & 3\, <\, x\, \leq \, 4 \end{cases}\\ gof(x)\, =\, \begin{cases} x\, +\, 1, & 0\, \leq \, x\, <\, 1 \\ 3\, -\, x, & 1\, \leq \, x\, \leq \, 2 \\ x\, -\, 1, & 2\, <\, x\, \leq \, 3 \\ 5\, -\, x, & 3\, <\, x\, \leq \, 4 \end{cases}\\ $$
  • Question 4
    1 / -0
    Let $$f$$ and $$g$$ be increasing and decreasing functions respectively from $$\displaystyle \left ( 0,\infty  \right )$$ to $$\left ( 0,\infty  \right )$$ and let $$h\left ( x \right )=f\left [ g\left ( x \right ) \right ]$$. If $$h\left ( 0 \right )=0$$ then $$ h\left ( x \right )-h\left ( 1 \right )$$ is
    Solution
    Let $$\displaystyle F\left ( x \right )=h\left ( x \right )-h\left ( 1 \right )=f\left ( g\left ( x \right ) \right )-h\left ( 1 \right )$$ $$\displaystyle F'\left ( x \right )=f'\left ( g\left ( x \right ) \right ).g'\left ( x \right )=\left ( + \right )\left ( - \right )=-ive.$$ (As f is increasing function $$\displaystyle f'\left ( g\left ( x \right ) \right )$$ is +ive and as g is decreasing function $$\displaystyle g'\left ( x \right )$$ is-ive.) 
    Since F'(x) is-ive therefore F(x)i.e.h(x)-h(1) is decreasing function.
    Now split the interval $$\displaystyle I=\left [ 0,\infty  \right ]$$ into two intervals $$\displaystyle I_{1},0\leq x< 1and I_{2}, 1\leq x< \infty ,$$ 
    Apply the definition of decreasing function on $$\displaystyle h\left ( x \right )-h\left ( 1 \right ):$$ on $$\displaystyle I_{1},0\leq x< 1,\underset{\left ( Big \right )}{h\left ( x \right )}-\underset{\left ( Less \right )}{h\left ( 1 \right )}=+ive$$ On $$\displaystyle I_{2},1\leq x< \infty ,\underset{\left ( Less \right )}{h\left ( x \right )}-\underset{\left ( Big \right )}{h\left ( 1 \right )}=-ive$$ Hence for $$\displaystyle I,h\left ( x \right )-h\left ( 1 \right )$$ is neither always zero nor always +ive nor always-ive,nor strictly increasing throughout.
    Hence (v) is the correct answer.
  • Question 5
    1 / -0
    If f(x)=x+5 and g(x)=$$\displaystyle \sqrt{x^{2}-9}$$  then find the domain of gof(x)
    Solution
    $$ gof(x) = g(f(x)) = \sqrt {{(x+5)}^{2} -9} = \sqrt {x^2 + 25 + 10x -9} $$
               $$ = \sqrt {x^2 + 16 + 10x} = \sqrt {(x+8)(x+2)} $$

    Now, for the square root to have a real value, both $$ (x+8)\ and\ (x+2) $$ should be positive or equal to zero or both should be negative or equal to zero.

    Case 1: When both
    $$ x+8 \ge 0 $$   and $$ x + 2 \ge 0 $$
    $$ => x \ge -8 $$  and $$ x\ge -2 $$

    $$ => x \ge -2 $$ is the solution for this case

    Case 2: When both
    $$ x+8 \le 0 $$   and $$ x + 2 \le 0 $$
    $$ => x \le -8 $$  and $$ x\le -2 $$

    $$ => x \le -8 $$ is the solution for this case.

    So, combining these both, we get the domain, $$ x \le -8\ and\   x \ge -2$$
  • Question 6
    1 / -0
    Let $$f(x)=\ln x$$  and  $$g(x)\, =\, \left (\displaystyle \frac{x^{4}\, -\, x^{3}\, +\, 3x^{2}\, -\, 2x\, +\, 2}{2x^{2}\, -\, 2x\, +\, 3 )}\right )$$. The domain of $$f(g(x))$$ is
    Solution
    $$f(x)=\ln x$$ and $$g(x)\, =\, \displaystyle \frac{x^{4}\, -\, x^{3}\, +\, 3x^{2}\, -\, 2x\, +\, 2}{2x^{2}\, -\, 2x\, +\, 3}$$

    Now, $$f(g(x))=f \left( \displaystyle \frac{x^{4}\, -\, x^{3}\, +\, 3x^{2}\, -\, 2x\, +\, 2}{2x^{2}\, -\, 2x\, +\, 3} \right)$$

    $$\Rightarrow f(g(x))=\ln\left( \displaystyle \frac{x^{4}\, -\, x^{3}\, +\, 3x^{2}\, -\, 2x\, +\, 2}{2x^{2}\, -\, 2x\, +\, 3} \right)$$

    For log to be defined 
    $$\displaystyle \frac{x^{4}\, -\, x^{3}\, +\, 3x^{2}\, -\, 2x\, +\, 2}{2x^{2}\, -\, 2x\, +\, 3} >0$$
    The above inequality holds for all $$x\in R$$
  • Question 7
    1 / -0
    If $$f(x)=\begin{cases} x+1,\quad \quad if\quad x\, \leq \, 1 \\ 5-x^{ 2 }\quad \quad if\quad x>1 \end{cases},g(x)=\begin{cases} x\quad \quad if\quad x\leq 1 \\ 2-x\quad if\quad x>1 \end{cases}$$
    Number of negative integral solutions of $$g(f(x)) + 2 = 0$$ are 
    Solution
    $$f(x)=\begin{cases} x+1,\quad \quad if\quad x\, \leq \, 1 \\ 5-x^{ 2 }\quad \quad if\quad x>1 \end{cases},$$
    $$g(x)=\begin{cases} x\quad \quad if\quad x\leq 1 \\ 2-x\quad if\quad x>1 \end{cases}$$
    $$g(f(x))+2=0,\\ g(f(x))=-2,\\ g(f(x))=\begin{cases} x+1\quad \quad if\quad x\leq 0 \\ 1-x\quad if\quad 1\ge x>0 \\ x^{ 2 }-3\quad if\quad 2>x>1 \\5-x^2\quad if \quad x\geq 2\end{cases}\\ For\quad x<0\quad to\quad be\quad a\quad solution,\\ x+1=-2\longrightarrow 1\quad solution\\ $$

    Hence, option C.
  • Question 8
    1 / -0
    Find the inverse of the exponential function $$f$$.
    $$f(x)={e}^{x-1}+3$$
    Solution
    Let $$y=f(x)={e}^{x-1}+3$$ and now solve for $$x$$ to find the inverse of the given function.
    $$y={e}^{x-1}+3$$
    $${e}^{x-1}=y-3$$
    $$\ln { (y-3) } =x-1$$
    $$x=\ln { (y-3) }+1$$
    Therefore, the inverse of the function in terms of $$\ln { (x-3) }+1$$.
  • Question 9
    1 / -0
    If $$f(x) = x^{2} + x$$ and $$g(x) = \sqrt {x}$$, then the value of $$f(g(3))$$ is
    Solution
    Given, $$f(x)=x^2+x, g(x)=\sqrt x$$
    Then we need to find the value of $$f(g(3))$$
    $$\Rightarrow g(3) = \sqrt3$$ ..... given $$g(x) = \sqrt x $$
    $$\Rightarrow f(g(3)) = f(\sqrt3) = 3 + \sqrt3 $$  ..... given $$f(x) = { x }^{ 2 }+x$$
  • Question 10
    1 / -0
    Find the inverse of the logarithmic function $$f$$.
    $$f(x)=\ln(x+2)-3$$
    Solution
    Let $$y=f(x)=\ln { (x+2) }-3$$ and now solve for $$x$$ to find the inverse of the given function.
    $$y=\ln { (x+2) }-3$$
    $$\ln { (x+2) }=y+3$$
    $$x+2={e}^{y+3}$$
    $$x={e}^{y+3}-2$$
    Therefore, the inverse of the function in terms of $$x$$ is $${e}^{x+3}-2$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now