Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 75

Result Self Studies

Relations and Functions Test - 75
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=\displaystyle\frac{1}{3}x+3$$, then find $$f^{-1}(x)$$.
    Solution
    $$f(x) = \dfrac { 1 }{ 3 } x + 3$$ 
    Let the equation be $$y$$, then we get 
    $$f(x) = \dfrac { 1 }{ 3 } x+3 = y$$ 
    Therefore $${ f }^{ -1 }y= x$$
    $$\therefore \dfrac { 1 }{ 3 } x+3=y$$ 
    $$\therefore x = 3(y-3)$$
    $$\therefore { f }^{ -1 }y=x=3(y-3)$$ 
    Now replace $$y$$ with $$x$$.
    So, the answer is $$3x-9$$.
  • Question 2
    1 / -0
    If $$f(x)=2x^3$$ and $$g(x)=3x$$, calculate the value of $$g(f(-2))-f(g(2))$$.
    Solution
    • $$f(-2) = 2 \times { (-2) }^{ 3 } = -16$$ 
    • $$g(2) = 3 \times 2 =6$$
    • $$g(f(-2)) = g(-16) = 3 \times -16 = -48$$
    • $$f(g(2)) = f(6) = 2 \times { (6) }^{ 3 } = 432$$
    • $$g(f(-2)) - f(g(2)) = -48-432 = -480$$
  • Question 3
    1 / -0
    Find the inverse of the quadratic function $$f$$.
    $$f(x)=-{x}^{2}+2, x>=0$$
    Solution
    Let $$y=f(x)=-x^2+2$$ and now solve for $$x$$ to find the inverse of the given function.
    $$\Rightarrow y=x^2+2$$
    $$\Rightarrow -x^2=y-2$$
    $$\Rightarrow x^2=2-y$$
    $$\Rightarrow x=\pm \sqrt { 2-y }$$
    Since it is given that $$x>=0$$, therefore, 
    $$x=\sqrt { 2-y }$$ 
    Therefore, the inverse of the function in terms of $$x$$ is $$\sqrt { 2-x }$$.
  • Question 4
    1 / -0
    Find the inverse of the cube root function $$f$$.
    $$f(x)={(x+1)}^{1/3}$$
    Solution
    Let $$y=f(x)={(x+1)}^{1/3}$$  and now solve for $$x$$ to find the inverse of the given function.
    $$y={(x+1)}^{1/3}$$,   cubing both sides we get,
    $$y^3=x+1$$
    $$x=y^3-1$$
    Therefore, the inverse of the function in terms of $$x$$ is $$x^3-1$$.
  • Question 5
    1 / -0
    Find the inverse of the logarithmic function $$f$$.
    $$f(x)=\ln(x)$$
    Solution
    Let $$y=f(x)=\ln { (x) }$$ and now solve for $$x$$ to find the inverse of the given function.
    $$y=\ln { (x) }$$
    $$x=e^y$$
    Therefore, the inverse of the function in terms of $$x$$ is $$e^x$$.
  • Question 6
    1 / -0
    Find the inverse of the square root function $$f$$.
    $$f(x)=\sqrt{x-1}$$
    Solution
    Let $$y=f(x)=\sqrt { x-1 }$$  and now solve for $$x$$ to find the inverse of the given function.
    $$y=\sqrt { x-1 }$$,   squaring both sides we get,
    $$y^2=x-1$$
    $$x=y^2+1$$
    Therefore, the inverse of the function in terms of $$x$$ is $$x^2+1$$.
  • Question 7
    1 / -0
    Given two functions $$f(x)$$ and $$g(x)$$ such that $$f(x) = \sin (arctan x), g(x) =\tan (arc\sin x)$$, and $$0\leq x < \dfrac {\pi}{2}$$. The value of the composite function $$f\left (g\left (\dfrac {\pi}{10}\right )\right ) $$ is:
    Solution
    $$g(x)=\tan { (\sin ^{ -1 }{ x } ) } =\tan { \theta  } $$
    $$=\dfrac { x }{ \sqrt { 1-{ x }^{ 2 } }  } $$
    $$f(x)=\sin { (\tan ^{ -1 }{ x } ) } =\dfrac { x }{ \sqrt { 1+{ x }^{ 2 } }  } $$
    $$f(g(x))=\dfrac { g(x) }{ \sqrt { 1+{ g(x) }^{ 2 } }  } $$
    $$=\dfrac { \dfrac { x }{ \sqrt { 1-{ x }^{ 2 } }  }  }{ \sqrt { 1+\dfrac { x }{ \sqrt { 1-{ x }^{ 2 } }  }  }  } =x$$
    $$f(g(\dfrac { \pi  }{ 10 } ))=0.314$$

  • Question 8
    1 / -0
    Find the maximum value of $$g(f(x))$$ if:
    $$f(x) = x + 4$$ and
    $$g(x) = 6 - x^{2}$$
    Solution
    Given, $$f(x)=x+4, g(x)=6-x^2$$
    $$\therefore g(f(x)) = g(x+4) = 6-{(x+4)}^{2}$$
    The minimum value of $${(x+4)}^{2}$$ is $$0$$ which occurs at $$x=-4$$.
    So, the maximum value of $$g(f(x))$$ is $$6-0 = 6$$.
  • Question 9
    1 / -0
    If $$f(x) = 1 - 4x$$, and $$f^{-1}(x)$$ is the inverse of $$f(x)$$, then the value of  $$f(-3) f{-1}(-3)=$$ is:
    Solution
    Let $$f(x) = 1-4x = y$$ 
    $$\therefore x =\dfrac { (1-y)}{4}$$ and $$x = f^{ -1 }\left( y \right) $$
    Therefore $$x = f^{ -1 }\left( y \right) =\dfrac {(1-y)}{4}$$
    So, $$ f(-3)f^{ -1 }\left( -3 \right) = \dfrac {(1+12)(1+3)}{4} = 13$$
  • Question 10
    1 / -0
    Given that $$f(x) = \dfrac {2x}{5} + \dfrac {7}{3}$$, find $$ f^{-1} (x) $$.
    Solution
    Given, $$f(x) =\dfrac { 2x}{5} + \dfrac {7}{3} $$
    Let $$f(x)$$ be $$y$$ , then $$f^{ -1 }\left( y \right) $$ is $$x$$
    $$\therefore f(x) = \dfrac {2x}{5} + \dfrac {7}{3} = y$$ 
    $$\therefore \dfrac {2x}{5} = y-\dfrac {7}{3} =\dfrac { (3y-7)}{3}$$
    $$\therefore x =\dfrac { (15y-35)}{6} = f^{ -1 }\left( y \right) $$
    $$\therefore f^{ -1 }\left( x \right)  =\dfrac { (15x-35)}{6}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now