Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 77

Result Self Studies

Relations and Functions Test - 77
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$f: R\rightarrow R$$ be a function such that $$f(x) = ax + 3\sin x + 4\cos x$$. Then $$f(x)$$ is invertible if
    Solution

    Given : $$f\left( x \right) =ax+3\sin { x+4\cos { x }  } $$
    $$\rightarrow $$As $$\sin { x }$$ and $$\cos { x } $$ are periodic function of period : $$2\pi $$

    $$\rightarrow $$ The function $$' f '$$ is invertible provided that the domain is restricted to  an interval  of length $$2\pi $$ or less than that.

    Hence the option given $$(-5,5),(-\infty ,5) and (-5,\infty )$$  does not fall under the interval $$2\pi $$ 

    Hence none of the above is the correct answer.

    Therefore option D is correct Answer

  • Question 2
    1 / -0
    $$f:\left( 0,\infty  \right) \rightarrow \left( 0,\infty  \right) $$ is defined by $$f(x)=\begin{cases} { 2 }^{ x },\quad x\in \left( 0,1 \right)  \\ { 5 }^{ x },\quad x\in [1,\infty ) \end{cases}$$ is
    Solution

  • Question 3
    1 / -0
    In the set $$Q^{+}$$ of all positive rational numbers, the operation $$\ast$$ is defined by the formula $$a\ast b = \dfrac {ab}{6}$$. Then, the inverse of $$9$$ with respect to $$\ast$$ is
    Solution
    Let $$e$$ be the identity,
    Therefore, $$ a\ast e = a$$
    $$\Rightarrow \dfrac {ae}{6} = a$$
    $$\Rightarrow e = 6$$
    Since $$ a\ast a^{-1} = e$$,
    thus $$a\ast a^{-1} = 6$$
    $$\Rightarrow \dfrac {aa^{-1}}{6} = 6$$
    $$\Rightarrow a^{-1} = \dfrac {6\times 6}{a}$$
    Therefore, $$ 9^{-1} = \dfrac {6\times 6}{9} = 4$$
  • Question 4
    1 / -0
    Let $$A=\left\{ { a }_{ 1 },{ a }_{ 2 },{ a }_{ 3 },{ a }_{ 4 }{ a }_{ 5 },{ a }_{ 6 } \right\} $$ and $$B=\left\{ { b }_{ 1 },{ b }_{ 2 },{ b }_{ 3 } \right\} $$. The number of functions of $$f:A\rightarrow B$$ such that it is onto and there are exactly three elements in $$A$$ such that $$f(A)=b$$, is
    Solution
    Since there should be exactly 3 elements in $$ A $$ such that 
    $$ f(A) = b $$
    the function $$ f$$  is a bijection from a subset $$ A_1 $$ of $$ A $$ to $$ B $$., each having 3 elements.

    Number of ways to select 3 elements from $$ A $$ $$ =\;  ^6C_3 $$

    Number of bijection from $$ A_1 $$ to $$ B $$  $$ = 3 ! $$

    Hence, the number of functions $$ =\;  ^6C_3 \; 3!$$ $$ = 120 $$
  • Question 5
    1 / -0
    Let $$f(x) = \dfrac {x}{1 - x}$$ and let $$\alpha$$ be a real number. If $$x_{0} = \alpha, x_{1} = f(x_{0}), x_{2} = f(x_{1}), ....$$ and $$x_{2011} = - \dfrac {1}{2012}$$ then the value of $$\alpha$$ is
    Solution
    $$f(x)=\dfrac {x}{1-x}$$ also $$x_0=\alpha$$
    $$x_1 =f(x_0)=f(\alpha)=\dfrac {\alpha}{1-\alpha}$$
    $$x_2 =f(x_1)=f\left (\dfrac {\alpha}{1-\alpha}\right)=\dfrac {\dfrac {\alpha}{1-\alpha}}{1-\dfrac {\alpha}{1-\alpha}}=\dfrac {\alpha}{1-2\alpha}$$
    $$x_3 =f(x_2)=f\left (\dfrac {\alpha}{1-2\alpha}\right)=\dfrac {\dfrac {\alpha}{1-2\alpha}}{1-\dfrac {\alpha}{1-2\alpha}}=\dfrac {\alpha}{1-3\alpha}$$
    Analysis the values $$x_1, x_2, x_3$$, we can say that $$x_{2011}=\dfrac {\alpha}{1-20011\alpha}=-\dfrac {1}{2012}$$
    $$\Rightarrow \ 2012\alpha =-1+2011\alpha$$
    $$\Rightarrow \ 2012\alpha -2011\alpha =-1$$
    $$\Rightarrow \ \boxed {\alpha =-1}$$
  • Question 6
    1 / -0
    Consider set $$A={1,2,3,4}$$ and set $$B={0,2,4,6,8}$$, then the number of one-one function set $$A$$ to set $$B$$ in which $$f(i)\neq i$$ is,
  • Question 7
    1 / -0
    If $$f:R\rightarrow R$$ is defined by $$f(x)={x}^{2}-6x-14$$, then $$f^{-1}(2)$$ equals to
    Solution

  • Question 8
    1 / -0
    If $$f:R\rightarrow S$$ defined by
    $$f(x)=4\sin { x } -3\cos { x } +1$$ is onto, then $$S$$ is equal to
    Solution
    We have $$f(x)=4sin\:x-3cos\:x+1$$

    Therefore 
    maximum of $$f=\sqrt{4^2+(-3)^2}+1=\sqrt{16+9}+1=\sqrt{25}+1=5+1=6$$ and 
    minimum of $$f=-\sqrt{4^2+(-3)^2}+1=-\sqrt{16+9}+1=-\sqrt{25}+1=-5+1=-4$$

    $$S=$$ Range of $$f$$=$$[minimum\:f,maximum\:f]=[-4,6]$$
  • Question 9
    1 / -0
    Let for $$a \neq a_{1} \neq 0,\ f(x)=ax^{2}+bx+c,\ g(x)=a_{1}x^{2}+b_{1}x+c_{1}$$ and $$p(x)=f(x)-g(x)$$. If $$p(x)=0$$ only for $$x=-1$$ and $$p(-2)=2$$, then the value of $$p(2)$$ is
    Solution
    Given, $$f\left(x\right)=ax^{2}+bx+c,g\left(x\right)=ax^{2}+bx+c,$$ 

    and $$p\left(x\right)=f\left(x\right)-g\left(x\right)$$

    $$p\left(x\right)=0$$ for only $$x=-1,p\left(-2\right)=2$$ and $$a\neq a_{1}\neq 0$$

    $$\therefore p\left(x\right)=(a-a_{1})x^{2}+(b-b_{1})x+(c-c_{1})$$

    The standard quadratic equation is $$ax^2+bx+c=0$$ 

    For roots to be equal  $$ \displaystyle \Rightarrow b^{2}-4ac= 0 $$

    Then Sum of roots = $$-\dfrac {b}{a}$$ 

    Here, Only root is $$-1 \Rightarrow D=0 \Rightarrow (b-b_{1})^{2}=4(a-a_{1})(c-c_{1})\rightarrow(1)$$

    Sum of roots $$\Rightarrow (-1)+(-1)=\dfrac{-(b-b_{1})}{(a-a_{1})} \Rightarrow (b-b_{1})=2(a-a_{1}) \rightarrow(2)$$

    From (1) and (2), $$c-c_{1}=(a-a_{1})\rightarrow(3)$$ 

    $$\Rightarrow p\left(x\right)=(a-a_{1})x^{2}+2(a-a_{1})x+(a-a_{1})$$

    Now, $$p\left(-2\right)=2$$

    $$\Rightarrow 2=(a-a_{1})(-2)^{2}-2(a-a_{1})(-2)+(a-a_{1})$$

    $$\Rightarrow (a-a_{1})=2$$

    Now $$p(2)=2(2)^{2}+2(2)(2)+2=18$$
  • Question 10
    1 / -0
    Given that $$f'(x) > g'(x)$$ for all real x, and $$f(0) = g(0)$$. Then $$f(x) < g(x)$$ for all x belongs to
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now