Self Studies
Selfstudy
Selfstudy

Relations and Functions Test - 79

Result Self Studies

Relations and Functions Test - 79
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=x-\cfrac{1}{x}$$ then number of solutions of $$f(f(f(x)))=1$$ is
  • Question 2
    1 / -0
    Show that the function $$f:[0, \infty)\rightarrow [0, \infty)$$ defined by $$f(x)=\dfrac{2x}{1+2x}$$ is?
    Solution

  • Question 3
    1 / -0
    If $$f(x)=1+|x-1|,-1 \le x \le 3$$ and $$g(x)=2-|x+1|,-2 \le x \le 2$$ then choose the appropriate option.
    Solution

  • Question 4
    1 / -0
    Let $$f(x)=\dfrac{x^{2}-4}{x^{2}+4}$$ for $$|x|>2$$, then the function $$f:(-\infty, -2)\cup [2,\infty)\rightarrow (-1,1)$$ is
    Solution
    $$\begin{array}{l} f\left( x \right) =\frac { { { x^{ 2 } }-4 } }{ { { x^{ 2 } }+4 } }  \\ let\, \, f\left( x \right) =y \\ \Rightarrow y=\frac { { { x^{ 2 } }-4 } }{ { { x^{ 2 } }+4 } }  \\ \Rightarrow { x^{ 2 } }y+4y-{ x^{ 2 } }+4=0 \\ \Rightarrow { x^{ 2 } }\left( { y-1 } \right) +4\left( { y+1 } \right) =0 \\ \Rightarrow { x^{ 2 } }=\frac { { -4\left( { y+1 } \right)  } }{ { y-1 } }  \\ \Rightarrow x=\frac { { \sqrt { 4\left( { y+1 } \right)  }  } }{ { \left( { 1-y } \right)  } }  \\ \Rightarrow \frac { { 4\left( { y+1 } \right)  } }{ { 1-y } } 0 \\ \Rightarrow y+,0 \\ \Rightarrow y-1 \\ \Rightarrow 1-y0 \\ \Rightarrow y1 \\ Hence,\, \, range\, \, of\, \, { f^{ b } }\, \, is\left( { -1,1\, \, which\, \, is\, \, equal\, \, to\, \, Codomain } \right)  \\ \therefore \, \, { f^{ h } }\, \, is\, \, one-one-onto{ 1mu } \end{array}$$
  • Question 5
    1 / -0
    Let $$f:R\rightarrow R$$ be defined by $$f(x)=\dfrac {x|x|}{2}+\cos x+1$$ then $$f(x)$$ is
    Solution

  • Question 6
    1 / -0
    Let $$f : R \rightarrow (-1,1)$$ be defined as $$f(x)=\dfrac {e^{x}-e^{-x}}{e^{x}+e^{-x}}$$ then $$f$$ is
    Solution

  • Question 7
    1 / -0
    $$f:A \rightarrow A,A=\left\{a_{1},a_{2},a_{3},a_{4},a_{5}\right\}$$, then the number of one one function so that $$f(x_{i})\neq x_{i},x_{i}\ \in\ A$$ is
    Solution

  • Question 8
    1 / -0
    If $$P(S)$$ denotes the set of all subsets of a given set S, then the number of one-to-one functions from the set $$S=\{1,2,3\}$$ to he set $$P(S)$$
    Solution

  • Question 9
    1 / -0
    $$\begin{aligned} \text { If } A & = \{ x | x / 2 \in Z , 0 \leq x \leq 10 \} \\ B & = \{ x | x \text { is one digit prime } \} \\ C & = \{ x | x / 3 \in N , x \leq 12 \} \end{aligned}$$,
    Then $$A \cap ( B \cup C )$$ is equal to-


    Solution

  • Question 10
    1 / -0
    The function $$f:N\rightarrow N $$ defined by $$f\left( x \right) =x-5\left[ \dfrac { x }{ 5 }  \right]$$, where $$N$$ is the set of natural numbers and $$[x]$$ denotes the greatest integer less then or equal to $$x$$ is
    Solution
    undefined

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now