Self Studies

Linear Programming Test - 8

Result Self Studies

Linear Programming Test - 8
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Determine the maximum value of Z = 11x + 7y subject to the constraints :2x + y ≤ 6, x ≤ 2, x ≥ 0, y ≥ 0.

    Solution

    Here , maximize Z = 11x + 7y , subject to the constraints :2x + y ≤ 6, x ≤ 2, x ≥ 0, y ≥ 0.

    Corner points

    Z = 11x +7 y

    C(0, 0 )

    0

    B (2,0)

    22

    D(2,2 )      

    36

    A(0,6)

    42

    Hence the maximum value is 42

  • Question 2
    1 / -0

    Maximize Z = 3x + 4y, subject to the constraints: x + y ≤ 1, x ≥ 0, y ≥ 0.

    Solution

    Here , maximize , Z = 3x + 4y, subject to the constraints: x + y ≤ 1, x ≥ 0, y ≥ 0.

    Corner points

    Z = 3x +4 y

    C(0, 0 )

    0

    B (1,0)

    3

    D(0,1 )      

    4

    Hence the maximum value is 4

  • Question 3
    1 / -0

    Maximise the function Z = 11x + 7y, subject to the constraints: x ≤ 3, y ≤ 2,x ≥ 0, y ≥ 0.

    Solution

    We have , Maximise the function Z = 11x + 7y, subject to the constraints: x ≤ 3, y ≤ 2,x ≥ 0, y ≥ 0.

    Corner points

    Z = 11x +7 y

    C(0, 0 )

    0

    B (3,0)

    33

    D(0,2 )      

    14

    A( 3, 2 )

    47

    Hence the function has maximum value of 47

  • Question 4
    1 / -0

    Minimise Z = 13x – 15y subject to the constraints : x + y ≤ 7, 2x – 3y + 6 ≥ 0 , x ≥ 0, y ≥ 0.

    Solution

    Here , Minimise Z = 13x – 15y subject to the constraints : x + y ≤ 7, 2x – 3y + 6 ≥ 0 , x ≥ 0, y ≥ 0.

    Corner points

    Z = 13x - 15 y

    C( - 3 , 0 )

    -39

    B (7,0)

    91

    D(4,3)       

    7

    Hence the minimum value of the function is -39

  • Question 5
    1 / -0

    Maximize Z = 100x + 120y , subject to constraints 2x + 3y ≤ 30, 3x + y ≤ 17, x ≥ 0, y ≥ 0.

    Solution

    We have , Maximize Z = 100x + 120y , subject to constraints 2x + 3y ≤ 30, 3x + y ≤ 17, x ≥ 0, y ≥ 0.

    Corner points

    Z = 100x +120 y

    P( 0 , 0 )

    0

    Q(3 , 8)

    1260………………….(Max.)

    R( 0, 10 )  

    1200

    S(17/3 , 0 )

    1700/3

    Hence the maximum value is 1260

  • Question 6
    1 / -0

    Maximize Z = 5x+3y , subject to constraints x + y ≤ 300 , 2x + y ≤ 360, x ≥ 0, y ≥ 0.

    Solution

    Here , Maximize Z = 5x+3y , subject to constraints x + y ≤ 300 , 2x + y ≤ 360, x ≥ 0, y ≥ 0.

    Corner points

    Z = 5x +3 y

    P( 0 ,300 )

    900

    Q(180 , 0)

    900

    R( 60, 240 )    

    1020…………………..(Max.)

    S(0 , 0 )

    0

    Hence, the maximum value is 1020

  • Question 7
    1 / -0

    Maximize Z = 50x + 60y , subject to constraints x +2 y ≤ 50 , x +y ≥ 30, x, y ≥ 0.

    Solution

    Here , Maximize Z = 50x+60y , subject to constraints x +2 y ≤ 50 , x + y ≥ 30, x, y ≥ 0.

    Corner points

    Z = 50x +60 y

    P( 50 ,0 )

    2500

    Q(0 , 30)

    1800

    R( 10, 20 )

    1700

    Hence, the maximum value is 2500

  • Question 8
    1 / -0

    Minimize Z = 50x+60y , subject to constraints x +2 y ≤ 50 , x + y ≥ 30, x, y ≥ 0.

    Solution

    Here , Maximize Z = 50x+60y , subject to constraints x +2 y ≤ 50 , x + y ≥ 30, x, y ≥ 0.

    Corner points

    Z = 50x +60 y

    P( 50 ,0 )

    2500

    Q(0 , 30).

    1800

    R( 10, 20 )

    1700

    Hence the minimum value is 1700

  • Question 9
    1 / -0

    Corner points of the feasible region for an LPP are (0, 2), (3, 0), (6, 0), (6, 8) and (0, 5).Let F = 4x + 6y be the objective function. The Minimum value of F occurs at

    Solution

    Here the objective function is given by : F = 4x +6y .

    Corner points

    Z = 4x +6 y

    (0, 2 )

    12........(Min.)

    (3,0)

    12........(Min.)

    (6,0 )

    24

    (6 , 8 )

    72........(Max.)

    (0 , 5 )

    30

    Hence it is clear that the minimum value occurs at any point on the line joining the points (0,2) and (3,0)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now