The sample space of the experiment is,
\(S=\)\(\{(1, \mathrm{H}),(1, \mathrm{~T}),(2, \mathrm{H}),(2, \mathrm{~T}),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4, \mathrm{H}),(4, \mathrm{~T}),(5, \mathrm{H}),(5, \mathrm{~T},(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}\)
Let \(A\) be the event that the coin shows a tail and \(B\) be the event that at least one die shows 3.
\( A=\{(1, T),(2, T),(4, T) \cdot(5, T)\}\)
\(B=\{(3,1),(3,2) ,(3,3),(3,4) ,(3,5),(3,6) ,(6,3)\}\)
\(\Rightarrow A \cap B-\phi\)
\(\therefore P(A \cap B)-D\)
Then,
\(P(B)=P(\{3,1\})+P(\{3,2\})+P(\{3,3\})+P(\{3,4\})+P(13,5\})+P(\{3,6\})+P(\{6,3\})\)
\(=\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}\)
\(=\frac{7}{36}\)
Probability of the event that the coin shows a tail, given that at least one die shows 3 is given by,
\(P(\frac{A}{B})\) = \(\frac{P(A \cap B)}{P(B)}\)
\(=\frac{0}{(\frac{7}{36})}\)
\(=0\)
Hence, the correct option is (A).