If a coin is tossed three times, then the sample space $$S$$ is
$$S = \left\{ HHH,HHT,HTH,HTT,THH,THT,TTH,TTT \right\} $$
It can be seen that the sample space has $$8$$ elements.
(i) $$E = \left\{HHH, HTH, THH, TTH\right\}$$
$$F = \left\{HHH, HHT\right\}$$
$$\therefore E \cap F = \left\{HHH\right\}$$
$$P\left( F \right) = \displaystyle\frac { 2 }{ 8 } = \displaystyle\frac { 1 }{ 4 } $$ and $$P\left( E \cap F \right) = \displaystyle\frac { 1 }{ 8 } $$
$$P\left( E | F \right) = \displaystyle\frac { P\left( E \cap F \right) }{ P\left( F \right) } = \displaystyle\frac { \displaystyle\frac { 1 }{ 8 } }{ \displaystyle\frac { 1 }{ 4 } } = \displaystyle\frac { 4 }{ 8 } = \displaystyle\frac { 1 }{ 2 } =0.50$$
(ii) $$E = \left\{HHH, HHT, HTH, THH\right\}$$
$$F = \left\{HHT, HTH, HTT, THH, THT, TTH, TTT\right\}$$
$$\therefore E \cap F = \left\{ HHT,HTH,THH \right\} $$
Clearly, $$P\left( E \cap F \right) = \displaystyle\frac { 3 }{ 8 } $$ and $$P\left( F \right) = \displaystyle\frac { 7 }{ 8 } $$
$$P\left( E | F \right) = \displaystyle\frac { P\left( E \cap F \right) }{ P\left( F \right) } = \displaystyle\frac { \displaystyle\frac { 3 }{ 8 } }{ \displaystyle\frac { 7 }{ 8 } } = \displaystyle\frac { 3 }{ 7 }=0.42 $$
(iii) $$E = \left\{ HHH, HHT, HTT, HTH, THH, THT, TTH \right\} $$
$$F = \left\{ HHT, HTT, HTH, THH, THT, TTH, TTT \right\} $$
$$\therefore E \cap F = \left\{ HHT, HTT, HTH, THH, THT, TTH \right\} $$
$$P\left( F \right) = \displaystyle\frac { 7 }{ 8 } $$ and $$P\left( E \cap F \right) = \displaystyle\frac { 6 }{ 8 } $$
Therefore, $$P\left( E | F \right) = \displaystyle\frac { P\left( E \cap F \right) }{ P\left( F \right) } = \displaystyle\frac { \displaystyle\frac { 6 }{ 8 } }{ \displaystyle\frac { 7 }{ 8 } } = \displaystyle\frac { 6 }{ 7 } =0.85$$