Self Studies

Probability Test - 15

Result Self Studies

Probability Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    STATEMENT - 1 : Dependent events are those in which the outcome of one does not affect and is not affected by the other.
    STATEMENT - 2 : Dependent events are those in which the outcome of one affects and is affected by the other.
    Solution
    Two events are dependent if the outcome or occurrence of the first affects the outcome or occurrence of the second so that the probability is changed.
  • Question 2
    1 / -0
    If A and B are independent events,then  $$P\left ( \dfrac{B}{A} \right )= $$
    Solution
    If A and B are independent events then: $$P(A\cap B)=P(A)P(B)$$
    $$P(\dfrac{B}{A})=\dfrac{P(A\cap B)}{P(A)}=\dfrac{P(A)P(B)}{P(A)}=P(B)$$
  • Question 3
    1 / -0
    If $$A$$ and $$B$$ are events such that $$P\left( A|B \right) =P\left( B|A \right) $$, then
    Solution
    It is given that, $$P\left( A|B \right) =P\left( B|A \right) $$
    $$\Rightarrow \displaystyle\frac { P\left( A\cap B \right)  }{ P\left( B \right)  } = \displaystyle\frac { P\left( A\cap B \right)  }{ P\left( A \right)  } $$
    $$\Rightarrow P\left( A \right) =P\left( B \right) $$
    Thus, the correct answer is (D).
  • Question 4
    1 / -0
    A coin is tossed three times, where
    (i) $$E$$ : head on third toss,  $$F$$ : heads on first two tosses
    (ii) $$E$$ : at least tow heads,  $$F$$ : at most two heads
    (iii) $$E$$ : at most two tails,  $$F$$ : at least one tail
    Determine $$ P\left( E|F \right) $$ 
    Solution
    If a coin is tossed three times, then the sample space $$S$$ is
    $$S = \left\{ HHH,HHT,HTH,HTT,THH,THT,TTH,TTT \right\} $$
    It can be seen that the sample space has $$8$$ elements.
    (i) $$E = \left\{HHH, HTH, THH, TTH\right\}$$
    $$F = \left\{HHH, HHT\right\}$$
    $$\therefore  E \cap F = \left\{HHH\right\}$$
    $$P\left( F \right) = \displaystyle\frac { 2 }{ 8 } = \displaystyle\frac { 1 }{ 4 } $$ and $$P\left( E \cap F \right) = \displaystyle\frac { 1 }{ 8 } $$
    $$P\left( E | F \right) = \displaystyle\frac { P\left( E \cap F \right)  }{ P\left( F \right)  } = \displaystyle\frac { \displaystyle\frac { 1 }{ 8 }  }{ \displaystyle\frac { 1 }{ 4 }  } = \displaystyle\frac { 4 }{ 8 } = \displaystyle\frac { 1 }{ 2 } =0.50$$
    (ii) $$E = \left\{HHH, HHT, HTH, THH\right\}$$
    $$F = \left\{HHT, HTH, HTT, THH, THT, TTH, TTT\right\}$$
    $$\therefore  E \cap F = \left\{ HHT,HTH,THH \right\} $$
    Clearly, $$P\left( E \cap F \right) = \displaystyle\frac { 3 }{ 8 } $$ and $$P\left( F \right) = \displaystyle\frac { 7 }{ 8 } $$
    $$P\left( E | F \right) = \displaystyle\frac { P\left( E \cap F \right)  }{ P\left( F \right)  } = \displaystyle\frac { \displaystyle\frac { 3 }{ 8 }  }{ \displaystyle\frac { 7 }{ 8 }  } = \displaystyle\frac { 3 }{ 7 }=0.42 $$
    (iii) $$E = \left\{ HHH, HHT, HTT, HTH, THH, THT, TTH \right\} $$
    $$F = \left\{ HHT, HTT, HTH, THH, THT, TTH, TTT \right\} $$
    $$\therefore E \cap F = \left\{ HHT, HTT, HTH, THH, THT, TTH \right\} $$
    $$P\left( F \right) = \displaystyle\frac { 7 }{ 8 } $$ and $$P\left( E \cap F \right) = \displaystyle\frac { 6 }{ 8 } $$
    Therefore, $$P\left( E | F \right) = \displaystyle\frac { P\left( E \cap F \right)  }{ P\left( F \right)  } = \displaystyle\frac { \displaystyle\frac { 6 }{ 8 }  }{ \displaystyle\frac { 7 }{ 8 }  } = \displaystyle\frac { 6 }{ 7 } =0.85$$
  • Question 5
    1 / -0
    If $$P\left( A \right) = \displaystyle\frac { 1 }{ 2 } $$,  $$P\left( B \right) =0$$, then $$P\left( A|B \right) $$ is
    Solution
    It is given that, $$P\left( A \right) = \displaystyle\frac { 1 }{ 2 } $$ and $$P\left( B \right) =0$$
    $$P\left( A|B \right) = \displaystyle\frac { P\left( A\cap B \right)  }{ P\left( B \right)  } = \displaystyle\frac { P\left( A\cap B \right)  }{ 0 } $$
    Therefore, $$P\left( A|B \right) $$ is not defined.
    Thus, the correct answer is (C).
  • Question 6
    1 / -0
    Probability that $$A$$ speaks truth is $$\displaystyle\frac { 4 }{ 5 } $$. A coin is tossed. A reports that a head appears. The probability that actually there was head is
    Solution
    Let $${ E }_{ 1 }$$ and $${ E }_{ 2 }$$ be the events such that
    $${ E }_{ 1 } : A$$ speaks truth
    $${ E }_{ 2 } : A$$ speaks false
    Let $$X$$ be the event that a head appears.
    $$P\left( { E }_{ 1 } \right) =\displaystyle\frac { 4 }{ 5 } $$
    $$\therefore P\left( { E }_{ 2 } \right) =1-P\left( { E }_{ 1 } \right) =1-\displaystyle\frac { 4 }{ 5 } =\displaystyle\frac { 1 }{ 5 } $$
    If a coin is tossed, then it may result in either head $$\left( H \right) $$ or tail $$\left( T \right) $$.
    The probability of getting a head is $$\displaystyle\frac { 1 }{ 2 } $$ whether $$A$$ speaks truth or not.
    $$\therefore P\left( X|{ E }_{ 1 } \right) =P\left( X|{ E }_{ 2 } \right) =\displaystyle\frac { 1 }{ 2 } $$
    The probability that there is actually a head is given by $$P\left( { E }_{ 1 }|X \right) $$.
    $$P\left( { E }_{ 1 }|X \right) =\displaystyle\frac { P\left( { E }_{ 1 } \right) \cdot P\left( X|{ E }_{ 1 } \right)  }{ P\left( { E }_{ 1 } \right) \cdot P\left( X|{ E }_{ 1 } \right) +P\left( { E }_{ 2 } \right) \cdot P\left( X|{ E }_{ 2 } \right)  } $$
    $$=\displaystyle\frac { \displaystyle\frac { 4 }{ 5 } \cdot \displaystyle\frac { 1 }{ 2 }  }{ \displaystyle\frac { 4 }{ 5 } \cdot \displaystyle\frac { 1 }{ 2 } + \displaystyle\frac { 1 }{ 5 } \cdot \displaystyle\frac { 1 }{ 2 }  } $$
    $$= \displaystyle\frac { \displaystyle\frac { 1 }{ 2 } \cdot \displaystyle\frac { 4 }{ 5 }  }{ \displaystyle\frac { 1 }{ 2 } \left( \displaystyle\frac { 4 }{ 5 } + \displaystyle\frac { 1 }{ 5 }  \right)  } $$
    $$= \displaystyle\frac { \displaystyle\frac { 4 }{ 5 }  }{ 1 } $$
    $$= \displaystyle\frac { 4 }{ 5 }=0.80 $$
  • Question 7
    1 / -0
    Two events $$A$$ and $$B$$ will be independent, if
    Solution
    Two events $$A$$ and $$B$$ are said to be independent, if $$P\left( AB \right) =P\left( A \right) \times P\left( B \right) $$
    Consider the result given in alternative $$B$$.
    $$P\left( A\prime B\prime  \right) =\left[ 1-P\left( A \right)  \right] \left[ 1-P\left( B \right)  \right] $$
    $$\Rightarrow P\left( A\prime \cap B\prime  \right) =1-P\left( A \right) -P\left( B \right) +P\left( A \right) \cdot P\left( B \right) $$
    $$\Rightarrow 1-P\left( A\cup B \right) =1-P\left( A \right) -P\left( B \right) +P\left( A \right) \cdot P\left( B \right) $$
    $$\Rightarrow P\left( A\cup B \right) =P\left( A \right) +P\left( B \right) -P\left( A \right) \cdot P\left( B \right) $$
    $$\Rightarrow P\left( A \right) +P\left( B \right) -P\left( AB \right) =P\left( A \right) +P\left( B \right) -P\left( A \right) \cdot P\left( B \right) $$
    $$\Rightarrow P\left( AB \right) =P\left( A \right) \cdot P\left( B \right) $$
    This implies that $$A$$ and $$B$$ are independent, if $$P\left( A\prime B\prime  \right) =\left[ 1-P\left( A \right)  \right] \left[ 1-P\left( B \right)  \right] $$
  • Question 8
    1 / -0
    If $$P\left( A \right) = \displaystyle\frac { 6 }{ 11 },   P\left( B \right) = \displaystyle\frac { 5 }{ 11 }$$ and $$ P\left( A \cup B \right) = \displaystyle\frac { 7 }{ 11 }$$, find 
    (i) $$ P\left( A \cap B \right)$$
    (ii) $$ P\left( A | B \right)$$
    (iii) $$ P\left( B | A \right) $$
    Solution
    It is given that $$P\left( A \right) = \displaystyle\frac { 6 }{ 11 } ,  P\left( B \right) = \displaystyle\frac { 5 }{ 11 }$$ and $$ P\left( A \cup B \right) = \displaystyle\frac { 7 }{ 11 }$$
    (i) $$ P\left( A \cup B \right) = \displaystyle\frac { 7 }{ 11 }$$
    $$ \therefore P\left( A \right) + P\left( B \right) - P\left( A \cap B \right) = \displaystyle\frac { 7 }{ 11 }$$
    $$ \Rightarrow \displaystyle\frac { 6 }{ 11 } + \displaystyle\frac { 5 }{ 11 } - P\left( A \cap B \right) = \displaystyle\frac { 7 }{ 11 }$$
    $$ \Rightarrow P\left( A \cap B \right) = \displaystyle\frac { 11 }{ 11 } - \frac { 7 }{ 11 } = \displaystyle\frac { 4 }{ 11 }=0.36$$
    (ii) It is known that, $$ P\left( A | B \right) = \displaystyle\frac { P\left( A \cap B \right)  }{ P\left( B \right)  }$$
    $$ \Rightarrow P\left( A | B \right) = \displaystyle\frac { \displaystyle\frac { 4 }{ 11 }  }{ \displaystyle\frac { 5 }{ 11 }  } = \displaystyle\frac { 4 }{ 5 }=0.80$$
    (iii) It is known that, $$ P\left( B | A \right) = \displaystyle\frac { P\left( A \cap B \right)  }{ P\left( A \right)  }$$
    $$ \Rightarrow P\left( B | A \right) = \displaystyle\frac { \displaystyle\frac { 4 }{ 11 }  }{ \displaystyle\frac { 6 }{ 11 }  } = \displaystyle\frac { 4 }{ 6 } = \displaystyle\frac { 2 }{ 3 } =0.66$$
  • Question 9
    1 / -0
    10% of tools produced by a certain manufacturing process turn out to be defective. Assuming binomial distribution, the probability of 2 defective in simple of 10 tools chosen at random, is
    Solution
    Let the event of a tool being defective be $$X$$.
    $$\therefore$$ Probability of $$X$$ occurring = $$p=\dfrac{1}{10}$$
    $$\therefore q=1-p=\dfrac{9}{10}$$ 
    Now, as the process follows the binomial distribution, the probability of 2 tools being defective is
    $$^{10}C_2p^2q^{10-2}$$

    $$={}^{10}C_2p^2q^8$$

    $$=\dfrac{10!}{2!8!}\left(\dfrac{1}{10}\right)^2 \left(\dfrac{9}{10}\right)^8$$

    $$=0.194$$
    This is the required solution.
  • Question 10
    1 / -0
    Difference between sample space and subset of sample space is considered as 
    Solution
    The set of all the possible outcomes is called the sample space of the experiment and is usually denoted by S. 
    Any subset E of the sample space S
    Difference between sample space and subset of sample space is considered as complementary events.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now