a) $$P\left( \cfrac { E }{ F } \right) +P\left( \cfrac {\bar E }{ F } \right) =\cfrac { P\left( E\bigcap { F } \right) }{ P(F) } +\cfrac { P\left( \bar E\bigcap { F } \right) }{ P(F) } $$
$$=\cfrac { P\left( E\bigcap { F } \right) +P\left( \bar { E } \bigcap { F } \right) }{ P(F) } =\cfrac { P\left( F \right) }{ P(F) } =1$$
Therefore a) is not correct
b) $$P\left( \cfrac { E }{ F } \right) +P\left( \cfrac { E }{ \bar F } \right) =\cfrac { P\left( E\bigcap { F } \right) }{ P(F) } +\cfrac { P\left( { E } \bigcap { \bar F } \right) }{ P(F) } $$
$$=\cfrac { P\left( E\bigcap { F } \right) }{ P(F) } +\cfrac { P\left( E\bigcap { \bar { F } } \right) }{ 1-P(F) } \neq 1$$
Therefore b) is not correct
c) $$P\left( \cfrac { \bar { E } }{ F } \right) +P\left( \cfrac { E }{ \bar { F } } \right) =\cfrac { P\left( \bar { E } \bigcap { F } \right) }{ P(F) } +\cfrac { P\left( E\bigcap { \bar { F } } \right) }{ P(F) } $$
$$\cfrac { P\left( \bar { E } \bigcap { F } \right) }{ P(F) } +\cfrac { P\left( E\bigcap { \bar { F } } \right) }{ 1-P(F) } \neq 1$$
Therefore c) is not correct
d) $$P\left( \cfrac { E }{ \bar { F } } \right) +P\left( \cfrac { \bar { E } }{ \bar { F } } \right) =\cfrac { P\left( E\bigcap { \bar { F } } \right) }{ P(\bar { F } ) } +\cfrac { P\left( \bar { E } \bigcap { \bar { F } } \right) }{ P(\bar { F } ) } $$
$$=\cfrac { P\left( E\bigcap { \bar { F } } \right) +P\left( \bar E\bigcap { \bar { F } } \right) }{ P(\bar { F } ) } $$
$$=\cfrac { P\left( \bar { F } \right) }{ P(\bar { F } ) } =1$$
Therefore d) is correct.