Self Studies

Probability Test - 21

Result Self Studies

Probability Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If two events $$A$$ and $$B$$ are such that $$P\left( \overline { A }  \right) =0.3,P\left( B \right) =0.5$$ and $$P\left( A\cap B \right) =0.3$$, then $$\displaystyle P\left( \frac { B }{ A\cup \overline { B }  }  \right) $$ is equal to
    Solution
    We have, $$P\left( A\cup \overline { B }  \right) =P\left( A \right) +P\left( \overline { B }  \right) -P\left( A\cap \overline { B }  \right) $$

    $$\\ =\left( 1-P\left( \overline { A }  \right)  \right) +\left( 1-P\left( B \right)  \right) -\left( P\left( A \right) -P\left( A\cap B \right)  \right) \\ =\left( 1-0.3 \right) +\left( 1-0.5 \right) -\left( 0.7-0.3 \right) =0.8$$

    $$\displaystyle \therefore P\left( \frac { B }{ A\cup \overline { B }  }  \right) =\frac { P\left( B\cap \left( A\cup \overline { B }  \right)  \right)  }{ P\left( A\cup \overline { B }  \right)  } =\frac { P\left( \left( B\cap A \right) \cup \left( B\cap \overline { B }  \right)  \right)  }{ P\left( A\cup \overline { B }  \right)  } $$

    $$\displaystyle =\frac { P\left( A\cap B \right)  }{ P\left( A\cup \overline { B }  \right)  } =\frac { 0.3 }{ 0.8 } =\frac { 3 }{ 8 } $$
  • Question 2
    1 / -0
    The chances of defective screws in three boxes $$A,B,C$$ are $$\displaystyle \frac { 1 }{ 5 } ,\frac { 1 }{ 6 } ,\frac { 1 }{ 7 } $$ respectively. A box is selected at random and a screw drawn from it at random from it is found defective. The probability that it came from the box $$A$$ is
    Solution
    Let $$A$$ be the event that a screw drawn from the box and similar is for events $$B$$ and $$C$$.
    Let $$D$$ be the event that a defective screw is drawn. Then
    $$P\left( D \right) =P\left( A\cap D \right) +P\left( B\cap D \right) +P\left( C\cap D \right) $$
    $$\displaystyle =\dfrac { 1 }{ 3 } .\dfrac { 1 }{ 5 } +\dfrac { 1 }{ 3 } .\dfrac { 1 }{ 6 } +\dfrac { 1 }{ 3 } .\dfrac { 1 }{ 7 } $$
    $$\displaystyle P\left( \dfrac { A }{ D }  \right) =\dfrac { P\left( A\cap D \right)  }{ P\left( D \right)  } =\dfrac { \dfrac { 1 }{ 3 } .\dfrac { 1 }{ 5 }  }{ \dfrac { 1 }{ 15 } +\dfrac { 1 }{ 18 } +\dfrac { 1 }{ 21 }  } =\dfrac { 42 }{ 107 } $$
  • Question 3
    1 / -0
    There are two bags, one of which contains three black and four white balls while the other contains four black and three white balls. A die is cast: if the face 1 or 3 turns up, a ball is taken from the first bag; and if any other face turns up, a ball is chosen from the second bag. Find the probability of choosing a black ball.
    Solution
    Let  $$\displaystyle E_{1}$$ be the event that a ball is drawn from first bag.

    $$\displaystyle E_{2}$$ be the event that a ball is drawn form the second bag. 

    $$E$$ be the event a black ball is chosen.

    $$P(E_1)=\dfrac{2}{6}=\dfrac{1}{3}$$

    $$P(E_2)=\dfrac{4}{6}=\dfrac{2}{3}$$

    Now, $$\displaystyle P\left ( E \right )=P\left ( E_{1} \right )P\left ( 
    E/E_{1} \right )+P\left ( E_{2} \right )P\left ( E/E_{2} \right )$$ 

    $$=\displaystyle \frac{1}{3}.\frac{3}{7}+\frac{2}{5}.\frac{4}{7}$$

    $$=\dfrac{11}{21}.$$ 
  • Question 4
    1 / -0
    Two coins are tossed. What is the conditional probability that two heads result, given that there is at least one head ?
    Solution
    Let A be the event that two heads result and B the event that there is at least one head.
    If S denote the sample space, then $$\displaystyle S=\left \{\left ( H,H \right ),\left ( H,T \right )\left ( T,H \right ) \left ( T,T \right )\right \}$$ 
    $$\displaystyle A=\left \{ \left ( H,H \right )\right \}$$
    $$\displaystyle B=\left \{ \left ( H,H \right ),\left ( H,T \right )\left ( T,H \right ) \right \}$$
    So, $$\displaystyle A\cap B=\left \{ H,H \right \}$$
    $$\displaystyle P\left ( B \right )=\frac{3}{4},$$
    $$\displaystyle P\left ( A\cap B \right )=\frac{1}{4}$$ 
    Hence $$\displaystyle  P\left ( A|B \right )=\frac{P\left ( A\cap B \right )}{P\left ( B \right )}$$
    $$=\dfrac{1/4}{3/4}=\dfrac{1}{3}$$ 
  • Question 5
    1 / -0
    Consider a family with two children. Assume that each child is as likely to be a boy as it is to be a girl. Find the conditional probability that both children are boys, given that one child is a boy
    Solution
    $$P(boy) = 1/2 = P(girl) $$
    $$ P(2\ boys) = (\cfrac{1}{2})^2 = \cfrac{1}{4}$$
    $$P(2\ boys | 1\ boy) = P(2\ boy)/P(1\ boy) = 1/2 $$
  • Question 6
    1 / -0
    In a bolt factory, machines A, B and C manufacture 25%, 35%, 40% respectively. Of the total of their output 5, 4 and 2% are defective. A bolt is drawn and is found to be defective. What are the probabilities that it was manufactured by the machines A, B and C?
    Solution
    Here $$\displaystyle P\left( A \right) =\frac { 25 }{ 100 } ,P\left( B \right) =\frac { 35 }{ 100 } ,P\left( C \right) =\frac { 40 }{ 100 } $$

    $$\displaystyle P\left( \frac { D }{ A }  \right) =\frac { 5 }{ 100 } ,P\left( \frac { D }{ B }  \right) =\frac { 4 }{ 100 } ,P\left( \frac { D }{ C }  \right) =\frac { 2 }{ 100 } $$

    where $$D$$ denotes defective bolts
    Now $$\displaystyle P\left( D \right) =P\left( A \right) .P\left( \frac { D }{ A }  \right) +P\left( B \right) .P\left( \frac { D }{ B }  \right) +P\left( C \right) .P\left( \frac { D }{ C }  \right) $$

    $$\displaystyle =\frac { 25 }{ 100 } .\frac { 5 }{ 100 } +\frac { 35 }{ 100 } .\frac { 4 }{ 100 } +\frac { 40 }{ 100 } .\frac { 2 }{ 100 } =0.0345$$

    $$\displaystyle P\left( \frac { A }{ D }  \right) =\frac { P\left( A \right) .P\left( \frac { D }{ A }  \right)  }{ P\left( A \right) .P\left( \frac { D }{ A }  \right) +P\left( B \right) .P\left( \frac { D }{ B }  \right) +P\left( C \right) .P\left( \frac { D }{ C }  \right)  } $$

    $$\displaystyle =\frac { \frac { 25 }{ 100 } .\frac { 5 }{ 100 }  }{ 0.0345 } =\frac { 25 }{ 69 } $$

    $$\displaystyle P\left( \frac { B }{ D }  \right) =\frac { P\left( B \right) .P\left( \frac { D }{ B }  \right)  }{ P\left( A \right) .P\left( \frac { D }{ A }  \right) +P\left( B \right) .P\left( \frac { D }{ B }  \right) +P\left( C \right) .P\left( \frac { D }{ C }  \right)  } $$

    $$\displaystyle =\frac { \frac { 35 }{ 100 } .\frac { 4 }{ 100 }  }{ 0.0345 } =\frac { 28 }{ 69 } $$
    $$\displaystyle P\left( \frac { C }{ D }  \right) =\frac { P\left( C \right) .P\left( \frac { D }{ C }  \right)  }{ P\left( A \right) .P\left( \frac { D }{ A }  \right) +P\left( B \right) .P\left( \frac { D }{ B }  \right) +P\left( C \right) .P\left( \frac { D }{ C }  \right)  } $$

    $$\displaystyle =\frac { \frac { 40 }{ 100 } .\frac { 2 }{ 100 }  }{ 0.0345 } =\frac { 16 }{ 69 } $$
  • Question 7
    1 / -0
    If in Q. 104, we are told that a white ball has been drawn, find the probability that it was drawn from the first urn.
    Solution
    Here we have to find $$\displaystyle P\left ( A_{1}/B \right ).$$
    By Baye's theorem
    $$\displaystyle P\left ( A_{1}/B \right )= \frac{P\left ( A_{1} \right )P\left ( B/A_{1} \right )}{P\left ( A_{1} \right )P\left ( B/A_{1} \right )+P\left ( A_{2} \right )P\left ( B/A_{2} \right )+P\left ( A_{3} \right )P\left ( B/A_{3} \right )}$$
    $$\displaystyle = \dfrac{\dfrac{1}{3}.\dfrac{2}{5}}{\dfrac{3}{5}},$$
    $$\displaystyle = \frac{2}{9}.$$
  • Question 8
    1 / -0
    A is known to tell the truth in $$5$$ cases out of $$6$$ and he states that a white ball was drawn from a bag containing $$8$$ black and $$1$$ white ball. The probability that the white ball was drawn, is
    Solution
    Let $$W$$ denote the event that $$A$$ draws a white ball and $$T$$ the event that $$A$$ speak truth.
    In the usual notations, we are given that 
    $$\displaystyle P\left( W \right) =\frac { 1 }{ 9 } ,P\left( \frac { T }{ w }  \right) =\frac { 5 }{ 6 } $$
    so that $$\displaystyle P\left( \overline { W }  \right) =1-\frac { 1 }{ 9 } =\frac { 8 }{ 9 } ,P\left( \frac { T }{ \overline { W }  }  \right) =1-\frac { 5 }{ 6 } =\frac { 1 }{ 6 } $$.
    Using Baye's theorem required probability is given by 
    $$\displaystyle P\left( \frac { W }{ T }  \right) =\frac { P\left( W\cap T \right)  }{ P\left( T \right)  } =\frac { P\left( W \right) P\left( \frac { T }{ w }  \right)  }{ P\left( W \right) P\left( \frac { T }{ w }  \right) +P\left( \overline { W }  \right) P\left( \frac { T }{ \overline { W }  }  \right)  } $$
    $$\displaystyle =\frac { \dfrac { 1 }{ 9 } \times \dfrac { 5 }{ 6 }  }{ \dfrac { 1 }{ 9 } \times \dfrac { 5 }{ 6 } +\dfrac { 8 }{ 9 } \times \dfrac { 1 }{ 6 }  } =\frac { 5 }{ 13 } $$
  • Question 9
    1 / -0
    If two events A and B such that $$P(A')=0.3, P(B)=0.5$$ and $$P(A\cap B)=0.3$$, then $$P(B|A \cup B')$$ is
    Solution
    We have $$P(A\cup B')$$
    $$=P(A)+P(B')-P(A\cap B')$$
    $$=[1-P(A')]+[1-P(B)]-[P(A)-P(A\cap B)]$$
    $$=(1-0.3)+(1-0.5)-(0.7-0.3)=0.8$$.

    Now, $$P(B|A \cup B')=\dfrac {P[B\cap A(\cup B')]}{P(A\cup B')}$$

    $$=\dfrac {P[(B\cap A)\cup (B\cap B')]}{P(A\cup B')}$$

    $$=\dfrac {P(A\cap B)}{P(A\cup B')}=\dfrac {0.3}{0.8}=\dfrac {3}{8}$$
  • Question 10
    1 / -0
    If $$A$$ and $$B$$ are mutually exclusive events, then $$\displaystyle P\left ( A \right )> 0$$ and $$\displaystyle P\left ( B \right )\neq 1,$$ $$\displaystyle P\left ( \overline{A/B} \right )$$ is equal to
    Solution
    $$\displaystyle P\left ( \overline{A/B} \right )=P\left ( \bar{A}/\bar{B} \right )=\frac{P\left (

    \bar{A}\cap \bar{B} \right )}{P\left ( \bar{B} \right )}=\frac{P\left (

    \overline{A\cup B} \right )}{P\left ( \overline{B} \right

    )}=\frac{1-P\left ( A\cup B \right )}{P\left ( \overline{B} \right )}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now