Let $$S$$ be the sample space
$$\therefore S=\left\{ 1,2,3,4,5,6 \right\} \times \left\{ 1,2,3,4,5,6 \right\} \\ \therefore n\left( S \right) =36$$
Let $${ E }_{ 1 }\equiv $$ the event that the sum of the numbers coming up is $$9$$
and $${ E }_{ 2 }\equiv $$ the event of occurrence of $$5$$ on the first die.
$${ E }_{ 1 }\equiv \left\{ \left( 3,6 \right) ,\left( 6,3 \right) ,\left( 4,5 \right) ,\left( 5,4 \right) \right\} \\ \therefore n\left( { E }_{ 1 } \right) =4\\ { E }_{ 2 }\equiv \left\{ \left( 5,1 \right) ,\left( 5,2 \right) ,\left( 5,3 \right) ,\left( 5,4 \right) ,\left( 5,5 \right) ,\left( 5,6 \right) \right\} \\ \therefore n\left( { E }_{ 2 } \right) =6\\ { E }_{ 1 }\cap { E }_{ 2 }=\left\{ \left( 5,4 \right) \right\} \\ \therefore n\left( { E }_{ 1 }\cap { E }_{ 2 } \right) =1$$
Now $$\displaystyle P\left( { E }_{ 1 }\cap { E }_{ 2 } \right) =\frac { n\left( { E }_{ 1 }\cap { E }_{ 2 } \right) }{ n\left( S \right) } =\frac { 1 }{ 36 } $$ and $$\displaystyle P\left( { E }_{ 2 } \right) =\frac { n\left( { E }_{ 2 } \right) }{ n\left( S \right) } =\frac { 6 }{ 36 } =\frac { 1 }{ 6 } $$
$$\therefore$$ Required probability $$\displaystyle P\left( \frac { { E }_{ 1 } }{ { E }_{ 2 } } \right) =\frac { P\left( { E }_{ 1 }\cap { E }_{ 2 } \right) }{ P\left( { E }_{ 2 } \right) } =\frac { \frac { 1 }{ 36 } }{ \frac { 1 }{ 6 } } =\frac { 1 }{ 6 } $$