Let $$X$$ denote the number of aces obtained. Therefore, $$X$$ can take any of the values of 0, 1, or 2.
In a deck of 52 cards, 4 cards are aces. Therefore, there are 48 non-ace cards.
$$\therefore P\left( X=0 \right) =P\left( 0 ace and 2 non-ace cards \right) =\displaystyle\frac { _{ }^{ 4 }{ { C }_{ 0 } }\times _{ }^{ 48 }{ { C }_{ 2 } } }{ _{ }^{ 52 }{ { C }_{ 2 } } } =\displaystyle\frac { 1128 }{ 1326 } $$
$$P\left( X=1 \right) =P\left( 1 ace and 1 non-ace cards \right) =\displaystyle\frac { _{ }^{ 4 }{ { C }_{ 1 } }\times _{ }^{ 48 }{ { C }_{ 1 } } }{ _{ }^{ 52 }{ { C }_{ 2 } } } =\displaystyle\frac { 192 }{ 1326 } $$
$$P\left( X=2 \right) =P\left( 2 ace and 0 non-ace cards \right) =\displaystyle\frac { _{ }^{ 4 }{ { C }_{ 2 } }\times _{ }^{ 48 }{ { C }_{ 0 } } }{ _{ }^{ 52 }{ { C }_{ 2 } } } =\displaystyle\frac { 6 }{ 1326 } $$
Thus, the probability distribution is as follows.
Then, $$E\left( X \right) =\sum { { p }_{ i }{ x }_{ i } } $$
$$=0\times \displaystyle\frac { 1128 }{ 1326 } +1\times \displaystyle\frac { 192 }{ 1326 } +2\times \displaystyle\frac { 6 }{ 1326 } $$
$$=\displaystyle\frac { 204 }{ 1326 } $$
$$=\displaystyle\frac { 2 }{ 13 } $$
Therefore, the correct answer is D.