$${\textbf{Step  - 1: Finding probabilities of different
possible events}}$$
                    $${\text{Case  - 1: Head appears on the coin, }}$$
                    $${\text{P}}\left(
{\dfrac{{\text{W}}}{{\text{H}}}} \right){\text{ 
=  Probability of drawing white
ball from urn 2, when head appears on the coin}}$$
                    $$
\Rightarrow {\text{ P}}\left( {\dfrac{{\text{W}}}{{\text{H}}}}
\right){\text{  =  }}\left( {\dfrac{{^{\text{3}}{{\text{C}}_{\text{1}}}}}{{^{\text{5}}{{\text{C}}_{\text{1}}}}}{\text{
}} \times {\text{ }}\dfrac{{^{\text{2}}{{\text{C}}_{\text{1}}}}}{{^{\text{2}}{{\text{C}}_{\text{1}}}}}{\text{
}} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{(when white
is tranferred) }}$$
                                                $${\text{ +  }}\left( {\dfrac{{^{\text{2}}{{\text{C}}_{\text{1}}}}}{{^{\text{5}}{{\text{C}}_{\text{1}}}}}{\text{
}} \times {\text{ }}\dfrac{{^{\text{1}}{{\text{C}}_{\text{1}}}}}{{^{\text{2}}{{\text{C}}_{\text{1}}}}}{\text{
}} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right)({\text{when red is
transferred)}}$$
                    $$ \Rightarrow
{\text{ P}}\left( {\dfrac{{\text{W}}}{{\text{H}}}} \right){\text{  = 
}}\left( {\dfrac{{\text{3}}}{{\text{5}}}{\text{ }} \times {\text{ 1 }}
\times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{  + 
}}\left( {\dfrac{{\text{2}}}{{\text{5}}}{\text{ }} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}{\text{
}} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right){\text{  =  }}\dfrac{{\text{3}}}{{{\text{10}}}}{\text{  +  }}\dfrac{{\text{1}}}{{{\text{10}}}}{\text{  =  }}\dfrac{{\text{2}}}{{\text{5}}}$$
                    $${\text{Case  - 2: Tail appears on the coin,}}$$
                    $${\text{P}}\left(
{\dfrac{{\text{W}}}{{\text{T}}}} \right){\text{ 
=  Probability of drawing white
ball from urn 2, when tail appears on the coin}}$$
                    $$
\Rightarrow {\text{ P}}\left( {\dfrac{{\text{W}}}{{\text{T}}}}
\right){\text{  =  }}\left( {\dfrac{{^{\text{3}}{{\text{C}}_{\text{2}}}}}{{^{\text{5}}{{\text{C}}_{\text{2}}}}}{\text{
}} \times {\text{ }}\dfrac{{^{\text{3}}{{\text{C}}_{\text{1}}}}}{{^{\text{3}}{{\text{C}}_{\text{2}}}}}
\times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right)({\text{when 2 white
are transferred)  }}$$
                                                           $${\text{+  }}\left( {\dfrac{{^{\text{2}}{{\text{C}}_{\text{2}}}}}{{^{\text{5}}{{\text{C}}_{\text{2}}}}}{\text{
}} \times {\text{ }}\dfrac{{^{\text{1}}{{\text{C}}_{\text{1}}}}}{{^{\text{3}}{{\text{C}}_{\text{1}}}}}
\times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right)({\text{when 2  red is transferred)}}$$
                                                           $${\text{ +  }}\left( {\dfrac{{^{\text{3}}{{\text{C}}_{\text{1}}}{\text{
}} \times {{\text{ }}^{\text{2}}}{{\text{C}}_{\text{1}}}}}{{^{\text{5}}{{\text{C}}_{\text{2}}}}}{\text{
}} \times {\text{ }}\dfrac{{^{\text{2}}{{\text{C}}_{\text{1}}}}}{{^{\text{3}}{{\text{C}}_{\text{2}}}}}{\text{
}} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right)({\text{when 1 red
and 1 white is transferred)}}$$
                    $$ \Rightarrow
{\text{ P}}\left( {\dfrac{{\text{W}}}{{\text{T}}}} \right){\text{  = 
}}\left( {\dfrac{{{\text{3 }} \times {\text{ 2}}}}{{{\text{5 }} \times
{\text{ 4}}}}{\text{ }} \times {\text{ 1 }} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}}
\right){\text{  + }}\left( {{\text{ }}\dfrac{{{\text{1
}} \times {\text{ 2}}}}{{{\text{5 }} \times {\text{ 4}}}}{\text{ }} \times
{\text{ }}\dfrac{{\text{1}}}{{\text{3}}}{\text{ }} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}}
\right)$$
                                                                      $$+\left( {\dfrac{{{\text{3 }} \times {\text{ 2 }} \times {\text{ 2}}}}{{{\text{5 }} \times {\text{ 4}}}}{\text{ }} \times {\text{ }}\dfrac{{\text{2}}}{{\text{3}}}{\text{ }} \times {\text{ }}\dfrac{{\text{1}}}{{\text{2}}}} \right)$$
                   $$
\Rightarrow {\text{ P}}\left( {\dfrac{{\text{W}}}{{\text{T}}}}
\right){\text{  =  }}\dfrac{{\text{3}}}{{{\text{20}}}}{\text{  +  }}\dfrac{{\text{1}}}{{{\text{60}}}}{\text{  +  }}\dfrac{{\text{1}}}{{\text{5}}}{\text{  =  }}\dfrac{{{\text{11}}}}{{{\text{30}}}}$$
$${\textbf{Step  - 2: Finding total probability}}$$
                    $${\text{P  = 
P}}\left( {\dfrac{{\text{W}}}{{\text{H}}}} \right){\text{  + 
P}}\left( {\dfrac{{\text{W}}}{{\text{T}}}} \right)$$
                    $$
\Rightarrow {\text{ P  =  }}\dfrac{{\text{2}}}{{\text{5}}}{\text{  +  }}\dfrac{{{\text{11}}}}{{{\text{30}}}}{\text{  =  }}\dfrac{{{\text{23}}}}{{{\text{30}}}}$$
$$\mathbf{{\text{Hence, the probability that a white ball is drawn from Urn 2 is }}\dfrac{{{\text{23}}}}{{{\text{30}}}}}$$