E(X) is nothing but mean of X
$$\rightarrow $$ first sic natural numbers are
$$1,2,3,4,5,6$$
$$\rightarrow $$We can select two positive no.s in
$$6\times 5=30$$ ways
$$\rightarrow 2$$ numbers are selected at random among which X denotes the larger of the two no.s
$$\rightarrow $$But as X is largest among the two ,
it can be $$2,3,4,5$$ or $$6$$
$$\therefore P(X=2)=P$$ (larger no. is $$2$$) $${(1,2),(2,1)}$$
$$=\cfrac { 2 }{ 30 } $$
$$\rightarrow P\left( X=3 \right) =P$$ (Larger no. is $$3$$)
$$=\left\{ \left( 1,3 \right) ,\left( 3,1 \right) ,\left( 2,3 \right) ,\left( 3,2 \right) \right\} $$
$$=\cfrac { 4 }{ 30 } $$
$$\rightarrow P\left( X=4 \right) =P$$ (larger no. is $$4$$)
$$=\left\{ \left( 1,4 \right) ,\left( 4,1 \right) ,\left( 2,4 \right) ,\left( 4,2 \right) ,\left( 3,4 \right) ,\left( 4,3 \right) \right\} $$
$$=\cfrac { 6 }{ 30 } $$
$$\rightarrow P\left( X=5 \right) =P$$ (Larger no. is $$5$$)
$$=\left\{ \left( 1,5 \right) ,\left( 5,1 \right) ,\left( 2,5 \right) ,\left( 5,2 \right) ,\left( 3,5 \right) ,\left( 5,3 \right) ,\left( 4,5 \right) ,\left( 5,4 \right) \right\} $$
$$=\cfrac { 8 }{ 30 } $$
$$\rightarrow P\left( X=6 \right) =P$$ (Larger no. is $$6$$)
$$=\left\{ \left( 1,6 \right) ,\left( 6,1 \right) ,\left( 2,6 \right) ,\left( 6,2 \right) ,\left( 3,6 \right) ,\left( 6,3 \right) ,\left( 4,6 \right) ,\left( 6,4 \right) ,\left( 5,6 \right) ,\left( 6,50 \right) \right\} $$
$$=\cfrac { 10 }{ 30 } $$
$$\therefore E\left( X \right) =$$ mean $$=\sum { P\left( { X }_{ i } \right) } .{ X }_{ i }$$
$$=2\left( \cfrac { 2 }{ 30 } \right) +3\left( \cfrac { 4 }{ 30 } \right) +4\left( \cfrac { 6 }{ 30 } \right) +5\left( \cfrac { 8 }{ 30 } \right) +6\left( \cfrac { 10 }{ 30 } \right) $$
$$=\cfrac { 140 }{ 30 } =\cfrac { 14 }{ 3 } $$