$${\textbf{Step -1: We have probabilities of I and II
scoring a hit correctly are 0}}{\textbf{.3 and 0}}{\textbf{.2}}{\text{.}}$$
$${\text{Let us assume that
the probability of aeroplane I hitting correctly be P}}\left( A \right)$$
$$ \Rightarrow P\left( A
\right) = 0.3$$ $$\left(
{{\textbf{Given}}} \right)$$
$${\text{Therefore, The probability of aeroplane I missing is,}}$$
$$P\left( {\overline A }
\right) = 1 - P\left( A \right)$$
$$ \Rightarrow P\left(
{\overline A } \right) = 1 - 0.3 = 0.7$$
$${\text{Let us assume that
the probability of aeroplane II hitting correctly be P}}\left( B \right)$$
$$ \Rightarrow P\left( B
\right) = 0.2$$ $$\left( {{\textbf{Given}}} \right)$$
$${\text{Therefore, The probability of aeroplane II missing is,}}$$
$$P\left( {\overline B }
\right) = 1 - P\left( B \right)$$
$$ \Rightarrow P\left(
{\overline A } \right) = 1 - 0.2 = 0.8$$
$${\textbf{Step -2: Find the probability of aeroplane II
hitting the target.}}$$
$${\text{The Probability of
aeroplane II hit the target}}$$
$$ = P\left( {\overline A }
\right) \times P\left( B \right) + P\left( {\overline A } \right) \times
P\left( {\overline B } \right) \times P\left( {\overline A } \right) \times
P\left( B \right) + \ldots $$
$${\text{Substituting the
known values in the above equation we have,}}$$
$${\text{The Probability of
aeroplane II hit the target}}$$
$$ = 0.7 \times 0.2 + 0.7
\times 0.8 \times 0.7 \times 0.2 +
\ldots $$
$$ = 0.7 \times 0.2\left[ {1
+ 0.56 + 2\left( {0.56} \right) + \ldots
} \right]$$
$$ = 0.14\left[ {1 + 0.56 +
2\left( {0.56} \right) + \ldots }
\right]$$
$${\text{The above equation
is in G}}{\text{.P}}{\text{.}}$$ $${\text{Where}}$$
$$a = 1,$$ $$r = 0.56$$
$$\therefore $$ $${\text{Probability of aeroplane II hit the target}}$$
$$ = 0.14\left[ {\dfrac{1}{{1 - 0.56}}} \right]$$
$$\left( {\because \mathbf{{S_\mathbf {\infty }}} = \mathbf{\dfrac{a}{{1 -
r}}} }\right)$$
$$\therefore $$ $${\text{Probability
of aeroplane II hit the target}}$$ $$ = 0.14\left[ {\dfrac{1}{{0.44}}} \right]$$
$$\therefore $$ $${\text{Probability
of aeroplane II hit the target}}$$ $$ = \dfrac{7}{{22}}$$
$${\textbf{Hence, the probability that the target is hit by the second plane is}}$$ $$\mathbf{\dfrac{7}{{22}}.}$$ $${\textbf{Therefore, option B}}{\textbf{. is the correct
answer.}}$$