$$\quad To\quad get\quad a\quad sum\quad of\quad 6\quad ,the\quad three\quad numbers\quad could\quad be\quad either(1,2,3)or(2,2,2)$$
$$\quad For(1,2,3),the\quad total\quad number\quad of\quad different\quad arrangements\quad _{ 3 }^{ 3 }{ p }=\frac { 3 }{ 0 } =6$$
$$Total\quad \quad number\quad of\quad possibilities\quad that\quad \quad could\quad occur\quad \quad in\quad 3\quad operations=3*3*3=27$$
$$Probability\quad ofobtaininga1in\quad one\quad operation=Probability\quad ofobtaining\quad a2in\quad one\quad operation=Probability\quad ofobtaining\quad a3\quad in\quad one\quad operation=\frac { 1 }{ 3 } $$
$$Probability\quad ofobtaining1\quad and\quad 2\quad and3\quad in\quad any\quad order\quad 6\times \frac { 1 }{ 3 } .\frac { 1 }{ 3 } .\frac { 1 }{ 3 } =\frac { 6 }{ 27 } $$
$$Probability\quad ofobtaining\quad \quad 2\quad in\quad each\quad of\quad the\quad 3\quad operations\frac { 1 }{ 3 } \frac { 1 }{ 3 } .\frac { 1 }{ 3 } =\frac { 1 }{ 27 } $$
$$Chance\quad or\quad probability\quad of\quad obtaining\quad a\quad total\quad of\quad 6=\frac { 6 }{ 27 } +\frac { 1 }{ 27 } =\frac { 7 }{ 27 } $$