Probabilities depends on who starts the game.
Let A starts the game
$$P(A\,win\,the\,1st\,game)$$ $$\frac{1}{2}$$
Suppose $$A$$ does not win $$1st$$ game. For $$A$$ to participate in the 3rd game, a must lose 1st game and $$B$$ must be lose 2nd game.
Hence, this is conditional probability.
$$\begin{array}{l} P\left( { A\, win\, 3rd\, \, game\, given\, \, A\, \, lsot\, 1st\, \, game\, \, and\, \, B\, \, lost\, 2nd\, game } \right) \\ =P\left( { A\, win\, 3rd\, \, game\, \, } \right) \times P\left( { A\, lost\, 1st\, game } \right) \times P\left( { B\, lost2nd\, game } \right) \\ =\frac { 1 }{ 2 } \times \frac { 1 }{ 2 } \times \frac { 1 }{ 2 } ={ \left( { \frac { 1 }{ 2 } } \right) ^{ 3 } } \\ Similarly, \\ P\left( { A\, win\, 5th\, game\, given\, A\, lost\, 1st\, game,\, B\, lost\, 2nd\, game\, ,\, A\, lost\, 3rd\, game\, and\, 4th\, game } \right) \\ =\frac { 1 }{ 2 } \times \frac { 1 }{ 2 } \times \frac { 1 }{ 2 } \times \frac { 1 }{ 2 } \times \frac { 1 }{ 2 } ={ \left( { \frac { 1 }{ 2 } } \right) ^{ 5 } } \\ This\, process\, continues\, till\, A\, or\, B\, win\, the\, game \\ Therefore\, \\ P\left( { A\, wins\, the\, game } \right) =\frac { 1 }{ 2 } +{ \left( { \frac { 1 }{ 2 } } \right) ^{ 3 } }+{ \left( { \frac { 1 }{ 2 } } \right) ^{ 5 } }+......... \\ This\, is\, a\, geometrical\, proges{ { sion } }\, with\, first\, term.\, a=\frac { 1 }{ 2 } and\, common\, ratio,\, r={ \left( { \frac { 1 }{ 2 } } \right) ^{ 2 } }=\frac { 1 }{ 4 } \\ So \\ P\left( { A\, wins\, the\, game\, } \right) =\frac { { \frac { 1 }{ 2 } } }{ { 1-\frac { 1 }{ 4 } } } =\frac { 2 }{ 3 } \\ Hence, \\ obability\, of\, who\, starts\, the\, game\, wins=\frac { 2 }{ 3 } \\ obability\, \, of\, the\, other\, player\, wins=\frac { 1 }{ 3 } \\ Hence,\, option\, A\, is\, the\, correc{ { t } }\, answer. \end{array}$$