Self Studies

Probability Test - 45

Result Self Studies

Probability Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Directions For Questions

    If it is given that A and B are two events such that P(B)$$= \frac{3}{5}$$  P(A/B) $$= \frac{1}{2}$$  and P(A $$\cup$$ B) $$= \frac{4}{5}$$,

    ...view full instructions

     then P(A) equals
    Solution
    P(B)$$= \dfrac{3}{5}$$  P(A/B) $$= \dfrac{1}{2}$$  and P(A $$\cup$$ B) $$= \dfrac{4}{5}$$
    $$\because P(A / B) = \dfrac{P(A \cap B)}{P(B)}$$
    $$\Rightarrow \dfrac{1}{2} = \dfrac{P(A \cap B)}{3/5}$$
    $$\Rightarrow P(A \cap B) = \dfrac{3}{5} \times \dfrac{1}{2} = \dfrac{3}{10}$$
    And $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
    $$\Rightarrow \dfrac{4}{5} = P(A) + \dfrac{3}{5} - \dfrac{3}{10}$$                   

    $$\Rightarrow \dfrac{4}{5} = P(A) + \dfrac{3}{5} - \dfrac{3}{10}$$


    $$\therefore P(A) = \dfrac{4}{5} - \dfrac{3}{5} + \dfrac{3}{10} = \dfrac{8 - 6 + 3}{10} = \dfrac{1}{2}$$   

    $$\Rightarrow P(A) = \dfrac{4}{5} - \dfrac{3}{5} + \dfrac{3}{10} = \dfrac{8 - 6 + 3}{10} = \dfrac{1}{2}$$
  • Question 2
    1 / -0
    A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement the probability of getting exactly one red ball is
    Solution

    Probability of getting exactly one red (R) ball

    $$= P_R \cdot P_{\bar R} \cdot P_{\bar R} + P_{\bar R} \cdot P_{R} \cdot P_{\bar R} + P_{\bar R} \cdot  P_{\bar R} \cdot P_R$$

    $$= \dfrac{5}{8} \cdot \dfrac{3}{7} \cdot \dfrac{2}{6} + \dfrac{3}{8} \cdot \dfrac{5}{7} \cdot \dfrac{2}{6} + \dfrac{3}{8} \cdot \dfrac{2}{7} \cdot \dfrac{5}{6}$$

    $$= \dfrac{15}{4 \cdot 7 \cdot 6} + \dfrac{15}{4 \cdot 7 \cdot 6} + \dfrac{15}{4 \cdot 7 \cdot 6}$$

    $$\dfrac{5}{56} + \dfrac{5}{56} + \dfrac{5}{56} = \dfrac{15}{56}$$


  • Question 3
    1 / -0
    Let A and B be two events such that P(A) $$= \frac{3}{8}$$, P(B) $$= \frac{5}{8}$$ and P(A $$\cup$$ B) $$= \frac{3}{4}$$. Then $$P(A|B). P(A'|B)$$ is equal to
    Solution
    Here, P(A) $$= \displaystyle \frac{3}{8}$$, P(B) $$=\displaystyle  \frac{5}{8}$$ and P(A $$\cup$$ B) $$= \displaystyle \frac{3}{4}$$

    $$\because P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
    $$\Rightarrow  P(A \cap B) = \displaystyle \frac{3}{8} + \frac{5}{8} - \frac{3}{4} = \frac{3 + 5 - 6}{8} = \frac{2}{8} = \frac{1}{4}$$
    $$\because P(A / B) = \displaystyle \frac{P(A \cap B)}{P(B)} = \frac{1/4}{5/8} = \frac{8}{20} = \frac{2}{5}$$

    And $$P(A' / B) = \displaystyle \frac{P(A' \cap B)}{P(B)} = \frac{P(B) - P(A \cap B)}{P(B)}$$
    $$=\displaystyle \frac{\frac{5}{8} - \frac{1}{4}}{\frac{5}{8}} = \frac{\frac{5 - 2}{8}}{\frac{5}{8}} = \frac{2}{5}$$
    $$\therefore P(A/B) \cdot P(A'/B) =\displaystyle  \frac{2}{5} . \frac{3}{5} = \frac{6}{25}$$
  • Question 4
    1 / -0
    A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement then the probability that two of the three balls were red, the first ball being red, is
    Solution
    Let $$E_1 =$$ Event that first ball being red
    And $$E_2 =$$ Event that exactly two of three balls being red
    $$\therefore P(E_1) = P_R \cdot P_{R} \cdot P_{R} + P_{R} \cdot P_{R} \cdot P_{\bar R} + P_{R} \cdot  P_{\bar R} \cdot P_R + P_{R} \cdot P_{\bar R} \cdot P_{\bar R}$$

    $$= \dfrac{5}{8} \cdot \dfrac{4}{7} \cdot \dfrac{3}{6} + \dfrac{5}{8} \cdot \dfrac{4}{7} \cdot \dfrac{3}{6} + \dfrac{5}{8} \cdot \dfrac{3}{7} \cdot \dfrac{4}{6} + \dfrac{5}{8} \cdot \dfrac{3}{7} \cdot \dfrac{2}{6}$$
     
    $$\dfrac{60 + 60 + 60 + 30}{336} = \dfrac{210}{336}$$

    $$P (E_1 \cap E_2) = P_R \cdot P_{\bar R} \cdot P_R + P_R \cdot P_R \cdot P_{\bar R}$$

    $$= \dfrac{5}{8} \cdot \dfrac{3}{7} \cdot \dfrac{4}{6} + \dfrac{5}{8} \cdot \dfrac{4}{7} \cdot \dfrac{3}{6} = \dfrac{120}{336}$$

    $$\therefore P(E_2 / E_1) = \dfrac{P(E_1 \cap E_2)}{P(E_1)} = \dfrac{120/336}{210/336} = \dfrac{4}{7}$$
  • Question 5
    1 / -0
    If two events are independent, then
    Solution
    If two events A and B are independent, then we know that 
    $$P(A \cap B) = P(A) \cdot P(B), P(A) \neq 0, P(B) \neq 0$$
    Since, A and B have a common outcome.
    Further, mutually exclusive events never have a common outcome.
    In other words, two independents events having non-zero probabilities of occurrence cannot be mutually exclusive and conversely, i.e., two mutually exclusive events having non-zero probabilities of outcome cannot be independent.
  • Question 6
    1 / -0
    A flashlight has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, the probability that both are dead is 
    Solution

  • Question 7
    1 / -0
    A box has 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
    Solution
    Here, $$n = 5, p = \dfrac{10} {100} = \dfrac{1} {10} $$ and $$q = \dfrac{9} {10} $$
    $$r \leq 1$$
    $$\Rightarrow r = 0.1$$

    Also, $$P(X =r) ={^n}C_rP^{r} q^{n=r}$$

    $$\therefore P(X = r) = P(r = 0) + P(r = 1)$$

    $$ = {^5}C_0 \left (\dfrac{1} {10}  \right )^{0} \left (\dfrac{9} {10}  \right )^{5} +  {^5}C_1 \left (\dfrac{1} {10}  \right )^{1} \left (\dfrac{9} {10}  \right )^{4}$$

    $$ =   \left (\dfrac{9} {10}  \right )^{5} +  5 \cdot \dfrac{1} {10} \cdot  \left (\dfrac{9} {10}  \right )^{4}$$

    $$ =   \left (\dfrac{9} {10}  \right )^{5} + \dfrac{1} {2}  \left (\dfrac{9} {10}  \right )^{4}$$
  • Question 8
    1 / -0
    The probability distribution of a discrete random variable X is given below.

    The value of K is

    Solution
    We know that, $$\sum { p }(x) =1$$
    $$\Rightarrow \dfrac{5}{k}+\dfrac{7}{k}+\dfrac{9}{k}+\dfrac{11}{k}=1$$
    $$\Rightarrow \dfrac{32}{k}=1$$
    $$\therefore K = 32$$
  • Question 9
    1 / -0
    The probability of guessing correctly at least 8 out 10 answers on a true-false type examination 
    Solution
    We know that, $$P(X=r)=^nC_r(p)^r(q)^{n-1}$$

    Here, $$n=10,p=\dfrac{1}{2},q=\dfrac{1}{2}$$

    And $$ r \geq 8 $$ i.e., $$r=8,9,10$$

    $$\Rightarrow P(X=r)=P(r=8)+P(r=9)=P(r=10)$$

    $$=^{10}C_8 \left(\dfrac{1}{2}\right)^8 \left(\dfrac{1}{2}\right)^{10-8} + ^{10}C_9 \left(\dfrac{1}{2}\right)^9  \left(\dfrac{1}{2}\right) + ^{10}C_{10} \left(\dfrac{1}{2}\right)^{10}$$

    $$ \dfrac{10!}{8!2!} \left(\dfrac{1}{2}\right)^{10} + \dfrac{10!}{9!1!} \left(\dfrac{1}{2}\right)^{10}+\left(\dfrac{1}{2}\right)^{10}$$

    $$=\left(\dfrac{1}{2}\right)^{10}. [45+10+1]=\left(\dfrac{1}{2}\right)^{10}\cdot 56$$

    $$=\dfrac{1}{16\cdot16}\cdot56=\dfrac{7}{128}$$
  • Question 10
    1 / -0
    In a box containing $$100$$ bulbs, $$10$$ are defective. The probability that out of a sample of $$5$$ bulbs, none is defective is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now