Let $$E$$ be the event that employee received the letter and $$A$$ that employer received the reply, then
$$\displaystyle P\left ( E \right )= \frac{n-1}{n}$$ and $$\displaystyle P\left ( \bar{E} \right )= \frac{1}{n}$$
$$\displaystyle P\left ( A/E \right )= \frac{n-1}{n}$$ and $$\displaystyle P\left ( A/\bar{E} \right )= 0$$
Now $$\displaystyle P\left ( A \right )= P\left ( E\cap A \right )+P\left ( \bar{E}\cap A \right )$$
$$\displaystyle = P\left ( E \right ).P\left ( A/E \right )+P\left ( \bar{E} \right ).P\left ( A/\bar{E} \right )$$
$$\displaystyle = \left ( \frac{n-1}{n} \right )\left ( \frac{n-1}{n} \right )+\frac{1}{n}.0$$
$$\displaystyle P\left ( A \right )= \left ( \frac{n-1}{n} \right )^{2}$$
$$\displaystyle
P\left ( \bar{A} \right )= 1-\left ( \frac{n-1}{n} \right )^{2}=
\frac{n^{2}-n^{2}-1+2n}{n^{2}}= \frac{2n-1}{n^{2}}$$
Now the required probability
$$\displaystyle P\left ( E/\bar{A} \right )= \frac{P\left ( E\cap \bar{A} \right )}{P\left ( \bar{A} \right )}= \frac{P\left ( E \right )-P\left ( E\cap A
\right )}{P\left ( \bar{A} \right )}$$
$$\displaystyle = \frac{P\left ( E \right )-P\left ( E \right ).P\left ( A/E \right )}{P\left ( \bar{A} \right )}$$
Putting the values, we get
$$\displaystyle = \dfrac{\dfrac{n-1}{n}-\dfrac{n-1}{n}.\dfrac{n-1}{n}}{\dfrac{2n-1}{n^{2}}}$$
$$\displaystyle \therefore P\left ( E/\bar{A} \right )= \frac{n-1}{2n-1}.$$