Self Studies

Inverse Trigonometric Functions Test - 53

Result Self Studies

Inverse Trigonometric Functions Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If  sin1x+sin1y+sin1z=3π 2\displaystyle \sin ^{ -1 }{ x } +\sin ^{ -1 }{ y } +\sin ^{ -1 }{ z } =\frac { 3\pi  }{ 2 } and f(1)=1,f(p+q)=f(p).f(q)p,qRf\left( 1 \right) =1,f\left( p+q \right) =f\left( p \right) .f\left( q \right) \quad \forall p,q\in R then  xf(1) +yf(2) +zf(3) x+y+zxf(1) +yf(2) +zf(3) =\displaystyle { x }^{ f\left( 1 \right)  }+{ y }^{ f\left( 2 \right)  }+{ z }^{ f\left( 3 \right)  }-\frac { x+y+z }{ { x }^{ f\left( 1 \right)  }+{ y }^{ f\left( 2 \right)  }+{ z }^{ f\left( 3 \right)  } } =
    Solution
    Since  π 2sin1xπ 2\displaystyle -\frac { \pi  }{ 2 } \le \sin ^{ -1 }{ x } \le \frac { \pi  }{ 2 }
     sin1x+sin1y+sin1z=3π 2\therefore \sin ^{ -1 }{ x } +\sin ^{ -1 }{ y } +\sin ^{ -1 }{ z } =\dfrac { 3\pi  }{ 2 }
     sin1x=sin1y=sin1z=π 2\displaystyle \sin ^{ -1 }{ x } =\sin ^{ -1 }{ y } =\sin ^{ -1 }{ z } =\frac { \pi  }{ 2 }
    x=y=z=1\Rightarrow x=y=z=1
    Also f(p+q)=f(p).f(q)p,qRf\left( p+q \right) =f\left( p \right) .f\left( q \right) \quad \forall p,q\in R   ....(1)
    Given f(1)=1f\left( 1 \right) =1
    From (1)
    f(1+1)=f(1).f(1)f(2)=12=1f\left( 1+1 \right) =f\left( 1 \right) .f\left( 1 \right) \Rightarrow f\left( 2 \right) ={ 1 }^{ 2 }=1    ....(2)
    From (2) 
    f(2+1)=f(2)f(1)f(2)=12.1=1f\left( 2+1 \right) =f\left( 2 \right) f\left( 1 \right) \Rightarrow f\left( 2 \right) ={ 1 }^{ 2 }.1=1 
    Now  xf(1) +yf(2) +zf(3) x+y+zxf(1) +yf(2) +zf(3) =333=2\displaystyle { x }^{ f\left( 1 \right)  }+{ y }^{ f\left( 2 \right)  }+{ z }^{ f\left( 3 \right)  }-\frac { x+y+z }{ { x }^{ f\left( 1 \right)  }+{ y }^{ f\left( 2 \right)  }+{ z }^{ f\left( 3 \right)  } } =3-\frac { 3 }{ 3 } =2
  • Question 2
    1 / -0
    Exhaustive set of values of parameter aa so that sin1xtan1x=a\sin ^{ -1 }{ x } -\tan ^{ -1 }{ x } =a\quad has a solution is
    Solution
    Let f(x)=sin1xtan1xf(x)=\sin ^{ -1 }{ x } -\tan ^{ -1 }{ x }
    sin1x and tan1xsin^{-1}x \space and \space \tan^{-1}x are increasong functions between x=[-1,1].
    Minimum value of f(x)isπ/4f(x) is -\pi/4 and  maximum value is π/4\pi/4.
    Hence the correct option is answer B.
  • Question 3
    1 / -0
    If i=12nsin1xi =nπ\displaystyle \sum _{ i=1 }^{ 2n }{ \sin ^{ -1 }{ { x }_{ i } }  } =n\pi , then i=12nxi\displaystyle \sum _{ i=1 }^{ 2n }{ { x }_{ i } } is equal to
    Solution
    We have i=12nsin1xi =nπ\sum _{ i=1 }^{ 2n }{ \sin ^{ -1 }{ { x }_{ i } }  } =n\pi
    sin1x1+sin1x2+...+sin1x2n=nπ\Rightarrow \sin ^{ -1 }{ { x }_{ 1 } } +\sin ^{ -1 }{ { x }_{ 2 } } +...+\sin ^{ -1 }{ { x }_{ 2n } } =n\pi
    Let sin1x1=α 1,sin1x2=α 2,...,sin1x2n=α n\sin ^{ -1 }{ { x }_{ 1 } } ={ \alpha  }_{ 1 },\sin ^{ -1 }{ { x }_{ 2 } } ={ \alpha  }_{ 2 },...,\sin ^{ -1 }{ { x }_{ 2n } } ={ \alpha  }_{ n }
    α 1+α 2+...+α 2n=nπ\therefore { \alpha  }_{ 1 }+{ \alpha  }_{ 2 }+...+{ \alpha  }_{ 2n }=n\pi    ....(1)
    x1=sinα 1,x2=sinα 2,...,x2n=sinα 2n\Rightarrow { x }_{ 1 }=\sin { { \alpha  }_{ 1 } } ,{ x }_{ 2 }=\sin { { \alpha  }_{ 2 } } ,...,{ x }_{ 2n }=\sin { { \alpha  }_{ 2n } }
     i=12nxi=x1+x2+...+x2n=sinα 1+sinα 2+...+sinα 2n\displaystyle \therefore \sum _{ i=1 }^{ 2n }{ { x }_{ i } } ={ x }_{ 1 }+{ x }_{ 2 }+...+{ x }_{ 2n }=\sin { { \alpha  }_{ 1 } } +\sin { { \alpha  }_{ 2 } } +...+\sin { { \alpha  }_{ 2n } }
    Clearly, from (1)  α i=π 2,i=1,2,...2n\displaystyle { \alpha  }_{ i }=\frac { \pi  }{ 2 } ,\quad \forall i=1,2,...2n
    i=12nxi=1+1+...+1=2n\therefore \sum _{ i=1 }^{ 2n }{ { x }_{ i } } =1+1+...+1=2n
  • Question 4
    1 / -0
    The set of values of parameter aa so that the equation (sin1x)3+(cos1x)3=aπ3\displaystyle (\sin^{-1}x)^{3}+(\cos^{-1}x)^{3}=a\pi^{3} has a solution. 
    Solution
    Let  y=(sin1x)3+(cos1x)3=(sin1x+cos1x)[(sin1x)2+(cos1x)2sin1x.cos1x]y = (\sin^{-1}x)^{3}+(\cos^{-1}x)^{3} = (\sin^{-1}x+\cos^{-1}x)[(\sin^{-1}x)^2+(\cos^{-1}x)^2-\sin^{-1}x.\cos^{-1}x]
    y=π2[(sin1x+cos1x)23sin1x.cos1x]\Rightarrow y = \cfrac{\pi}{2}[(\sin^{1-}x+\cos^{-1}x)^2-3\sin^{-1}x.\cos^{-1}x]
    y=π2[π243sin1x(π2sin1x)]\Rightarrow y = \cfrac{\pi}{2}\left[\cfrac{\pi^2}{4}-3\sin^{-1}x\left(\cfrac{\pi}{2}-\sin^{-1}x\right)\right ]
    y=π2[π216+3(π4sin1x)2]\Rightarrow y = \cfrac{\pi}{2}\left[\cfrac{\pi^2}{16}+3\left(\cfrac{\pi}{4}-\sin^{-1}x\right)^2\right ]
    Now we know π2sin1xπ2-\cfrac{\pi}{2} \leq \sin^{-1}x \leq \cfrac{\pi}{2}
    Thus Range of yy is [π332,7π38]\left[\cfrac{\pi^3}{32}, \cfrac{7\pi^3}{8}\right]
    Thus given equation to have solution a[132,78]a \in \left[\cfrac{1}{32}, \cfrac{7}{8}\right]
  • Question 5
    1 / -0
    The number of real solutions of (x,y)(x, y), where is y=sinx,y=cos1(cosx ),2πx2π,\displaystyle \:\left | y \right |= \sin x,y= \cos ^{-1}\left ( \cos x  \right),-2\pi \leq x\leq 2\pi , is
    Solution

    y=sin x,y=cos1(cos x),2πx2π\left| y \right| =\sin  x,\quad y=\cos ^{ -1 } \left( \cos  x \right) ,\quad -2\pi \leq x\leq 2\pi
    y=sin x1y=cos1(cos x),2πx2π2y=xwhen0xπy=2πxπx2πy=2πx2πxπy=xπx0\left| y \right| =\sin  x\quad ----\boxed { 1 } \\ y=\cos ^{ -1 } \left( \cos  x \right) ,\quad -2\pi \leq x\leq 2\pi \quad ----\boxed { 2 } \\ \rightarrow y=x\quad \quad \quad \quad when\quad 0\leq x\leq \pi \\ \rightarrow y=2\pi -x\quad \quad \quad \quad \quad \quad \pi \leq x\leq 2\pi \\ \rightarrow y=-2\pi -x\quad \quad \quad \quad \quad -2\pi \leq x\leq -\pi \\ \rightarrow y=-x\quad \quad \quad \quad \quad \quad \quad \quad -\pi\leq x\leq 0
    from (1) and (2)
    three different cases are x=sinx|x| = \sin{x}, 2πx=sinx|2\pi-x| = \sin{x} and 2π+x=sinx|2\pi+x| = \sin{x}

    For the above simultaneous equations, we get exactly 3 solutions.
    For x=0x=0 we get y=0y=0 for both the equations,
    For x=k(2π)x=k(2\pi) where kk is an integer, we get y=0y=0 in both the cases.
    Since xϵ[2π,2π]x\epsilon[-2\pi,2\pi] we get
    x=2πx=-2\pi and x=2πx=2\pi.
    Hence 3 solutions,
    at x=0x=0
    x=2πx=-2\pi and
    x=2πx=2\pi

    Hence, no of real solutions is 3

  • Question 6
    1 / -0
    cos1{12x2+1x2.1x24}=cos1x2cos1x\displaystyle \:\cos ^{-1}\left \{ \dfrac{1}{2}x^{2}+\sqrt{1-x^{2}.}\sqrt{1-\dfrac{x^{2}}{4}} \right \}= \cos ^{-1}\dfrac{x}{2}-\cos ^{-1}x holds for 
    Solution
    For the domain of the following function,
    1x201-x^{2}\geq 0 and 1x2401-\frac{x^{2}}{4}\geq0
    Therefore
    1x21\geq x^2 and 4x24\geq x^2
    x1|x|\leq 1 and x2|x|\leq 2
    Hence xϵ[1,1]x\epsilon[-1,1]
    cos1{12x2+1x2.1x24}=cos1x2cos1x\displaystyle \:\cos ^{-1}\left \{ \frac{1}{2}x^{2}+\sqrt{1-x^{2}.}\sqrt{1-\frac{x^{2}}{4}} \right \}= \cos ^{-1}\frac{x}{2}-\cos ^{-1}x
    L.H.S is always positive.
    cos1x2cos1x>0\Rightarrow \cos ^{-1}\frac{x}{2}-\cos ^{-1}x >0
    which is true for all 0x10\leq x\leq 1
    \therefore given equation holds for 0x10\leq x\leq 1

  • Question 7
    1 / -0
    If  sin1x+sin1y+sin1z=3π 2\displaystyle \sin ^{ -1 }{ x } +\sin ^{ -1 }{ y } +\sin ^{ -1 }{ z } =\frac { 3\pi  }{ 2 } , then  k=12(x100k+y106k)  x207.y207 \displaystyle \frac { \sum _{ k=1 }^{ 2 }{ \left( { x }^{ 100k }+{ y }^{ 106k } \right)  }  }{ \sum { { x }^{ 207 }.{ y }^{ 207 } }  } is
    Solution
    We have  sin1x+sin1y+sin1z=3π 2\displaystyle \sin ^{ -1 }{ x } +\sin ^{ -1 }{ y } +\sin ^{ -1 }{ z } =\frac { 3\pi  }{ 2 }

    It is possible only when 

     sin1x=π 2,sin1y=π 2\displaystyle \sin ^{ -1 }{ x } =\frac { \pi  }{ 2 } ,\sin ^{ -1 }{ y } =\frac { \pi  }{ 2 } and  sin1z=π 2\displaystyle \sin ^{ -1 }{ z } =\frac { \pi  }{ 2 }

    [π2sin1xπ2\because\dfrac{-\pi}{2}\leq\sin^{-1}x\leq\dfrac{\pi}{2}]

    x=1,y=1\Rightarrow x=1,y=1 and z=1z=1

     k=12(x100k+y106k)  x207.y207 =(x100+y106)+(x200+y212) x207.y207+y207.z207+z207.x207\displaystyle \quad \therefore \frac { \sum _{ k=1 }^{ 2 }{ \left( { x }^{ 100k }+{ y }^{ 106k } \right)  }  }{ \sum { { x }^{ 207 }.{ y }^{ 207 } }  } =\frac { \left( { x }^{ 100 }+{ y }^{ 106 } \right) +\left( { x }^{ 200 }+{ y }^{ 212 } \right)  }{ { x }^{ 207 }.{ y }^{ 207 }+{ y }^{ 207 }.{ z }^{ 207 }+{ z }^{ 207 }.{ x }^{ 207 } }

     =1+1+1+11+1+1=43\displaystyle =\frac { 1+1+1+1 }{ 1+1+1 } =\frac { 4 }{ 3 }
  • Question 8
    1 / -0
    The product of all real values of x satisfying the equation
    sin1cos(2x2+10x+4x2+5x+3)=cot(cot1(218x9x))+π2\sin^{-1}\cos \left ( \dfrac{2x^{2}+10\left | x \right |+4}{x^{2}+5\left | x \right |+3} \right )=\cot \left ( \cot ^{-1}\left ( \dfrac{2-18\left | x \right |}{9\left | x \right |} \right ) \right )+\dfrac{\pi }{2} is
    Solution
    sin1cos(2x2+10x+4x2+5x+3 )=cot(cot1(218x9x ) )+π 2sin1sin(π 2(2x2+10x+4x2+5x+3 ) )=218x9x+π 2π 22x2+10x+4x2+5x+3=218x9x+π 218x390x236x=2x2+10x+618x390x54x2x28x+6=0x24+3=0(x1)(x3)=0sin^{ -1 }cos\left( \cfrac { 2x^{ 2 }+10x+4 }{ x^{ 2 }+5x+3 }  \right) =cot\left( cot^{ -1 }\left( \cfrac { 2-18x }{ 9x }  \right)  \right) +\cfrac { \pi  }{ 2 } \\ \Rightarrow sin^{ -1 }sin\left( \cfrac { \pi  }{ 2 } -\left( \cfrac { 2x^{ 2 }+10x+4 }{ x^{ 2 }+5x+3 }  \right)  \right) =\cfrac { 2-18x }{ 9x } +\cfrac { \pi  }{ 2 } \\ \Rightarrow \cfrac { \pi  }{ 2 } -\cfrac { 2x^{ 2 }+10x+4 }{ x^{ 2 }+5x+3 } =\cfrac { 2-18x }{ 9x } +\cfrac { \pi  }{ 2 } \\ \Rightarrow -18x^{ 3 }-90x^{ 2 }-36x=2x^{ 2 }+10x+6-18x^{ 3 }-90x-54x\\ \Rightarrow 2x^{ 2 }-8x+6=0\Rightarrow x^{ 2 }-4+3=0\Rightarrow \left( x-1 \right) \left( x-3 \right) =0
    Therefore product of roots is 1×3=31\times 3=3
  • Question 9
    1 / -0
    The value of aa for which ax2+sin1(x22x+2)+cos1(x22x+2)=0\displaystyle ax^{2}+sin^{-1}(x^{2}-2x+2)+cos^{-1}(x^{2}-2x+2)=0 has a real solution is 
    Solution
    ax2+sin1((x1)2+1)+cos1((x1)2+1)=0ax^{2}+sin^{-1}((x-1)^{2}+1)+cos^{-1}((x-1)^{2}+1)=0
    ax2+π2=0ax^{2}+\frac{\pi}{2}=0
    x2=π2ax^{2}=\frac{-\frac{\pi}{2}}{a}
    x2=π2ax^{2}=\frac{-\pi}{2a} ...(i)
    And
    1(x1)2+11-1\leq(x-1)^{2}+1\leq1
    2(x1)20-2\leq(x-1)^{2}\leq0
    (x1)20(x-1)^{2}\leq0
    There is only one possibility
    (x1)2=0(x-1)^{2}=0
    x=1x=1
    Substituting in 1, we get
    a=π2a=-\frac{\pi}{2}
  • Question 10
    1 / -0
    If sin1x+sin1y+sin1z=π\displaystyle sin^{-1}x+sin^{-1}y+sin^{-1}z=\pi, then x4+y4+z4+4x2y2z2=k(x2y2+y2z2+z2x2)x^{4}+y^{4}+z^{4}+4x^{2}y^{2}z^{2}=k(x^{2}y^{2}+y^{2}z^{2}+z^{2}x^{2}), where kk is equal to
    Solution
    sin1(x)+sin1(y)=πsin1(z)sin^{-1}(x)+sin^{-1}(y)=\pi-sin^{-1}(z)
    sin1(x1y2+y1x2)=πsin1(z)sin^{-1}(x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}})=\pi-sin^{-1}(z)
    x1y2+y1x2=zx\sqrt{1-y^{2}}+y\sqrt{1-x^{2}}=z
    x2(1y2)+y2(1x2)+2xy(1x2)(1y2)=z2x^{2}(1-y^{2})+y^{2}(1-x^{2})+2xy\sqrt{(1-x^{2})(1-y^{2})}=z^2
    x2+y22x2y2+2xy(1x2)(1y2)=z2x^{2}+y^{2}-2x^{2}y^{2}+2xy\sqrt{(1-x^{2})(1-y^{2})}=z^{2}
    x2+y2z2=2x2y22xy(1x2)(1y2)x^{2}+y^{2}-z^{2}=2x^{2}y^{2}-2xy\sqrt{(1-x^{2})(1-y^{2})}
    Squaring and simplifying, we get
    x4+y4+z4+4x2y2z2=2(x2y2+z2y2+x2z2)x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+z^2y^2+x^2z^2)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now