Self Studies

Inverse Trigonometric Functions Test - 68

Result Self Studies

Inverse Trigonometric Functions Test - 68
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$tan^{-1}(1-x^{2}-\frac{1}{x^{2}})+sin^{-1}(x^{2}+\frac{1}{x^{2}}-1)$$ is equal to 
    Solution

  • Question 2
    1 / -0
    Evaluate : $$\sin \left(\dfrac {1}{2}\cos^{-1}\dfrac {4}{5}\right)$$ 
    Solution

  • Question 3
    1 / -0
    If $$cot^{1}\frac{1}{x}+cot^{-1}\frac{1}{y}+cot^{-1 }\frac{1}{z}=\frac{\pi }{2}$$ then.....
    Solution

  • Question 4
    1 / -0
    If $$\alpha =2\tan^{-1}(\sqrt{3-2\sqrt{2}})+\sin^{-1}\left(\dfrac{1}{\sqrt{6}-\sqrt{2}}\right), \beta =\cot^{-1}(\sqrt{3}-2)+\dfrac{1}{8}\sec^{-1}(-2)$$ & $$\gamma =\tan^{-1}\dfrac{1}{\sqrt{2}}+\cos^{-1}\dfrac{1}{\sqrt{3}}$$, then?
  • Question 5
    1 / -0
    If $$\cos^{-1} x > \sin^{-1} x$$, then find the range of x
    Solution
    We have $${\cos}^{-1}{x}>{\sin}^{-1}{x}$$

    $$\Rightarrow\,\dfrac{\pi}{2}-{\sin}^{-1}{x}>{\sin}^{-1}{x}$$

    $$\Rightarrow\,\dfrac{\pi}{2}>2{\sin}^{-1}{x}$$

    $$\Rightarrow\,\dfrac{\pi}{4}>{\sin}^{-1}{x}$$

    $$\Rightarrow\,{\sin}^{-1}{x}<\dfrac{\pi}{4}$$    .......$$(1)$$

    But $$-\dfrac{\pi}{2}\le {\sin}^{-1}{x}<\dfrac{\pi}{2}$$      ........$$(2)$$

    From $$(1)$$ and $$(2)$$ we have

    $$-\dfrac{\pi}{2}\le {\sin}^{-1}{x}<\dfrac{\pi}{4}$$

    $$\Rightarrow\,\sin{\left(-\dfrac{\pi}{2}\right)}\le x<\sin{\dfrac{\pi}{4}}$$

    $$\Rightarrow\,-1\le x<\dfrac{1}{\sqrt{2}}$$

  • Question 6
    1 / -0
    $$4 sin^{-1}x+cos^{-1} x=\pi  $$ then x=
    Solution

  • Question 7
    1 / -0
    $$ tan^{-1} \left (\dfrac{c_1\,x - y}{c_1\,y + x} \right ) + tan^{-1} \left ( \dfrac{c_2 - c_1}{1 + c_2c_1} \right ) + tan^{-1} \left (\dfrac{c_3 - c_2}{1 + c_3c_2}  \right ) + $$ ..... $$ + tan^{-1}\left (\dfrac{1}{c_n}  \right ) = $$
    Solution

  • Question 8
    1 / -0
    The value of $$\tan^{-1}\Bigg(\dfrac{x\cos\theta}{1-x\sin\theta}\Bigg)-\cot^{-1}\Bigg(\dfrac{\cos\theta}{x-\sin\theta}\Bigg)$$  is
    Solution

  • Question 9
    1 / -0
    Let  $$\begin{vmatrix}tan^{-1}x & tan^{-1}2x & tan^{-1}3x\\ tan^{-1}3x & tan^{-1}x & tan^{-1}2x\\
    tan^{-1}2x & tan^{-1}3x & tan^{-1}x \end{vmatrix}$$= 0, then the number of values of x satisfying the equation is 
    Solution

  • Question 10
    1 / -0
    If $$\cot^{-1}\left(\dfrac {-1}{5}\right)=x$$ then $$\sin x=$$ ?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now