Self Studies

Matrices Test - 34

Result Self Studies

Matrices Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=[x\, y\, z], B = \begin{bmatrix}a&h&g\\h&b&f\\g&f&c\end{bmatrix}$$ and $$C=\begin{bmatrix}x\\y\\z\end{bmatrix}$$
    Then, $$ABC = 0$$, if
    Solution
    $$ A = [x\,y\,z] B = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} c = \begin{bmatrix} x \\ y \\ z \end{bmatrix} $$
    $$ A.B = [x\,y\,z] \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} $$
    $$ = [ax+hy+gz\,\,\,\,hx+by+fz\,\,\,\,gx+fy+cz] $$
    $$ A.B.C = (AB)\times \begin{bmatrix} x \\ y \\ z\end{bmatrix} = [ax^{2}+hyx+gyx+hxy+by^{2}+fzy+gxz+fyz+cz^{2}] $$
    $$ ABC = [ax^{2}+by^{2}+cz^{2}+2hxy+2gzx+2fzy] $$ 
    $$ ABC = 0 $$ 
    when,
    $$ ax^{2}+by^{2}+cz^{2}+2hxy+2gzx+2fzy = 0 $$ 
  • Question 2
    1 / -0
    $$A=\begin{bmatrix} -2&4\\-1&2  \end{bmatrix}$$, then $$A^2$$ is equal to 
    Solution
    $$A=\begin{bmatrix} -2&4\\-1&2  \end{bmatrix}$$
    $$A.A.=A^{2}= \begin{bmatrix} -2&4\\-1&2  \end{bmatrix} \begin{bmatrix} -2&4\\-1&2  \end{bmatrix} = \begin{bmatrix} 4-4\,\,-2\times 4+4\times 2\\-1x-2+2x-1\,\,-1\times 4+2\times 2  \end{bmatrix} $$
    $$ A^{2}=\begin{bmatrix} 0&0\\0&0  \end{bmatrix} = O =$$ null matrix.
  • Question 3
    1 / -0
    If $$P=\begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}$$, then $${P}^{5}$$ is equal to
    Solution
    Given $$P=\begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}$$

    $${P}^{2}=P.P=\begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}\begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}$$

    $$=\begin{pmatrix} 4+2-4 & -4-6+8 & -8-8+12 \\ -2-3+4 & 2+9-8 & 4+12-12 \\ 2+2-3 & -2-6+6 & -4-8+9 \end{pmatrix}$$

    $$=\begin{pmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{pmatrix}=P$$

    $$\therefore$$ $${P}^{4}={P}^{2}=P$$
     
    $$\Rightarrow$$ $${P}^{5}={P}^{2}=P$$
  • Question 4
    1 / -0
    If $$A =\begin{bmatrix} 2 & -1 \\ -1 & 2  \end{bmatrix}$$ and $$I$$ is the unit matrix of order $$2$$, then $$A^2$$ equals
    Solution
    $$A=\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}\\ { A }^{ 2 }=A\times A=\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}\times \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}\\ \quad \quad =\begin{bmatrix} 4+1 & -2-2 \\ -2-2 & 1+4 \end{bmatrix}=\begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}$$
    From the given option to get first entry i.e $$5$$ of $$A^2$$, only option $$(A)$$ is satisfied. Or we can check as below
    $$4A-3I=\begin{bmatrix} 8 & -4 \\ -4 & 8 \end{bmatrix}-3\times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\\ \quad \quad \quad \quad =\begin{bmatrix} 8 & -4 \\ -4 & 8 \end{bmatrix}-\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}\\ \quad \quad \quad \quad =\begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix}={ A }^{ 2 }$$
  • Question 5
    1 / -0
    If $$A$$ is a matrix such that $$\begin{pmatrix}2&1 \\3&2 \end{pmatrix} A(1 \space  \,1)=\begin{pmatrix}1&1 \\0&0 \end{pmatrix}$$ then $$A= $$
    Solution
    $$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}A \begin{pmatrix} 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
    To maintain the rules of matrix multiplication, $$A$$ has to be of the order $$2 \times 1$$
    $$\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

    $$\Rightarrow \begin{pmatrix} 2x + y \\ 3x + 2y \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

    $$\Rightarrow \begin{pmatrix} 2x + y & 2x + y \\ 3x + 2y & 3x + 2y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

    $$\Rightarrow 2x + y = 1$$ and $$3x + 2y = 0$$
    $$\Rightarrow 4x + 2y - (3x + 2y) = 2 - 0$$
    $$\Rightarrow x = 2$$ and $$y = -3$$
  • Question 6
    1 / -0
    If $$A$$ and $$B$$ are any two matrices, then 
    Solution
                
    $$\textbf{Step 1: Finding the order}$$
                    $$\text{Matrix multiplication is only defined for two matrices whose order is of the form}$$ 
                    $$a\times b \text{ and }b\times c \text{ respectively}$$
                    $$\text{Since we cant say anything about the order of the given matrices it may or may not be defined}$$
    $$\textbf{Hence, AB may or may not be defined}$$
  • Question 7
    1 / -0
    For the matrices $$A=\begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}$$ $$B=\begin{bmatrix} 2 & 2 \\ -1 & 4 \end{bmatrix}$$
    What is $$AB$$?
    Solution
    $$A$$ and $$B$$ are given by $$A=\left[ \begin{matrix} 1 & 3 \\ 0 & -1 \end{matrix} \right] , B=\left[ \begin{matrix} 2 & 2 \\ -1 & 4 \end{matrix} \right]$$
    Thus, $$AB=\left[ \begin{matrix} (1\times 2)+(3\times -1) & (1\times 2)+(3\times 4) \\ (0\times 2)+(-1\times -1) & (0\times 2)+(-1\times 4) \end{matrix} \right] $$
    $$=\left[ \begin{matrix} 2-3 & 2+12 \\ 0+1 & 0-4 \end{matrix} \right] $$
    $$=\left[ \begin{matrix} -1 & 14 \\ 1 & -4 \end{matrix} \right]$$ 
  • Question 8
    1 / -0
    If $$A = \begin{bmatrix} 0& 1\\ 1 & 0\end{bmatrix}$$, then $$A^{2}$$ is equal to ______
    Solution
    We have, $$A = \begin{bmatrix} 0& 1\\ 1 & 0\end{bmatrix}$$

    Hence $$A^2=AA=\begin{bmatrix}0&1\\1&0\end{bmatrix}\begin{bmatrix} 0&1\\1&0\end{bmatrix}$$ 
    $$\quad = \begin{bmatrix}0\times 0+1\times 1&0\times 1+1\times 0\\1\times 0+0\times 1 &1\times 1+0\times 0\end{bmatrix}$$
    $$=\begin{bmatrix}1&0\\0&1\end{bmatrix}$$
  • Question 9
    1 / -0
    $$\begin{bmatrix} 3& 2\\ -1 & -2\\ 4 & 5\end{bmatrix} \begin{bmatrix} 0& a\\ b & c \end{bmatrix} = \begin{bmatrix}-4 &9 \\ 4 & -7\\ -10 & 19\end{bmatrix}$$
    Find $$a, b$$ and $$c$$.
    Solution
    The product is $$\begin{bmatrix} 3 & 2 \\ -1 & -2 \\ 4 & 5 \end{bmatrix}\begin{bmatrix} 0 & a \\ b & c \end{bmatrix}=$$ $$\begin{bmatrix} 2b & 3a+2c \\ -2b & -2c-a \\ 5b & 5c+4a \end{bmatrix}$$
    By given, we have

     $$\begin{bmatrix} 2b & 3a+2c \\ -2b & -2c-a \\ 5b & 5c+4a \end{bmatrix}$$ $$=\begin{bmatrix} -4 & 9 \\ 4 & -7 \\ -10 & 19 \end{bmatrix}$$

    By comparing, we get 
    $$b=-2 , a = 1 , c = 3$$
  • Question 10
    1 / -0
    If $$P=\begin{pmatrix}2&-2&-4 \\-1&3&4\\1&-2&-3\end{pmatrix}$$ then $$P^5$$ equals
    Solution
    $$P=\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
    $${ P }^{ 2 }=\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$$
    $$=\begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}=P$$
    Now,
    $${ P }^{ 2 }=P\quad { P }^{ 5 }={ P }^{ 2 }\times { P }^{ 3 }\Rightarrow { P }^{ 5 }={ P }^{ 4 }$$
    $$\left( \because { P }^{ 2 }=P \right) \Rightarrow { P }^{ 5 }={ P }^{ 2 }\times { P }^{ 2 }$$
    $${ P }^{ 2 }=P\times P$$
    $$\Rightarrow { P }^{ 5 }={ P }^{ 2 }=P$$
    $$\therefore { P }^{ 5 }=P$$
    $$\therefore $$Option A is correct
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now