Self Studies

Determinants Test - 68

Result Self Studies

Determinants Test - 68
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=\begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$$, then $$adj(3A^{2}+12A)$$ is equal to:
    Solution

  • Question 2
    1 / -0
    $$P = \left[ {\begin{array}{*{20}{c}}1&\alpha &3\\1&3&3\\2&4&4\end{array}} \right]$$ is the adjoint of a $$3 \times 3$$ matrix A and $$\left| A \right| = 4,$$ then $$\alpha $$ is equal to 
    Solution

  • Question 3
    1 / -0
    If  $$A = \left( \begin{array} { l l } { 1 } & { 2 } \\ { 3 } & { 5 } \end{array} \right), $$  then the value of the determinant  $$\left| A ^ { 2009 } - 5 A ^ { 2008 } \right|$$  is
    Solution

  • Question 4
    1 / -0
    The adjoining of the matrix $$\begin{bmatrix} 1 & -2 & 3 \\ 0 & 2 & -1 \\ -4 & 5 & 2 \end{bmatrix}$$, is 
    Solution

  • Question 5
    1 / -0
    There are 12 points in a plane of which 5 are collinear. The maximum number of distinct quadrilaterals which can be formed with vertices at these points is 
    Solution

  • Question 6
    1 / -0
    If $$A=A=\left[ \begin{matrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{matrix} \right]$$,then $$\left| A \right| \left| AdjA \right|$$ is equal to
    Solution

  • Question 7
    1 / -0
    If $$A=\begin{bmatrix} { a }_{ 1 } & { a }_{ 2 } & { a }_{ 3 } \\ { b }_{ 1 } & { b }_{ 2 } & { b }_{ 3 } \\ { c }_{ 1 } & { c }_{ 2 } & { c }_{ 3 } \end{bmatrix}$$ and $$A_i,B_i,C_i$$ are cofactors of $$a_i,b_i,c_i$$ then $$a_1B_1+a_2B_2+a_3B_3=$$
    Solution

  • Question 8
    1 / -0
    If $$A$$ is a square matrix $$(adj \,A)' - (adj \,A')$$
  • Question 9
    1 / -0
    If $$A$$ is singular matrix, then $$A.(adj\,A)$$ is 
    Solution

  • Question 10
    1 / -0
    Let $${\Delta _{\text{o}}} = $$ $$\left[ \begin{matrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{matrix} \right] $$ and let $${\Delta _1}$$ denote the determinant formed by the cofactors of elements of $${\Delta _0}$$ and $${\Delta _2}$$ denote the determinant formed by the cofactor of $${\Delta _1},$$ similarly $${\Delta _n}$$ denotes the determinant formed by the cofactors of $${\Delta _{n - 1}}$$ then the determinant value of $${\Delta _n}$$ is
    Solution
    Let $$A$$ be a matrix of order $$m\times m$$ and $$C$$ be its co-factor matrix

    We know that $$A.adj{\left(A\right)}=\left|A\right|.I$$

    $$\Rightarrow\,\left|A\right|\left|adj{\left(A\right)}\right|={\left|A\right|}^{m}.\left|I\right|$$

    $$\Rightarrow\,\left|A\right|\left|adj{\left(A\right)}\right|={\left|A\right|}^{m}$$       ......$$(1)$$ since $$\left|I\right|=1$$

    But $$adj{\left(A\right)}={C}^{T}$$

    $$\therefore\,\left|adj{\left(A\right)}\right|=\left|{C}^{T}\right|=\left|C\right|$$      .......$$(2)$$ since $$\left|C\right|=\left|{C}^{T}\right|$$

    From $$(1)$$ and $$(2)$$ we have

    $$\left|A\right|\left|C\right|={\left|A\right|}^{m}$$ 

    $$\Rightarrow\,\left|C\right|={\left|A\right|}^{m-1}$$ 

    Let $${\Delta}_{i}$$ be the cofactor matrix then

    $${\Delta}_{i}={\left({\Delta}_{i-1}\right)}^{m-1}$$ where $$m=3$$

    $$\Rightarrow\,{\Delta}_{i}={\left({\Delta}_{i-1}\right)}^{3-1}$$

    $$\Rightarrow\,{\Delta}_{i}={\left({\Delta}_{i-1}\right)}^{2}$$

    $$\Rightarrow\,{\Delta}_{n}={\left({\Delta}_{n-1}\right)}^{2}={\left({\left({\Delta}_{n-2}\right)}^{2}\right)}^{2}={\left({\left({\left({\Delta}_{n-3}\right)}^{2}\right)}^{2}\right)}^{2}$$ and so on.

    $$\Rightarrow\,{\Delta}_{n-1}={\left({\Delta}_{n-2}\right)}^{2}$$

    $$\Rightarrow\,{\Delta}_{n-2}={\left({\Delta}_{n-3}\right)}^{2}$$
    and so on.

    Hence $${\Delta}_{0}={\left({\Delta}_{0}\right)}^{{2}^{n}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now