Let $$A$$ be a matrix of order $$m\times m$$ and $$C$$ be its co-factor matrix
We know that $$A.adj{\left(A\right)}=\left|A\right|.I$$
$$\Rightarrow\,\left|A\right|\left|adj{\left(A\right)}\right|={\left|A\right|}^{m}.\left|I\right|$$
$$\Rightarrow\,\left|A\right|\left|adj{\left(A\right)}\right|={\left|A\right|}^{m}$$ ......$$(1)$$ since $$\left|I\right|=1$$
But $$adj{\left(A\right)}={C}^{T}$$
$$\therefore\,\left|adj{\left(A\right)}\right|=\left|{C}^{T}\right|=\left|C\right|$$ .......$$(2)$$ since $$\left|C\right|=\left|{C}^{T}\right|$$
From $$(1)$$ and $$(2)$$ we have
$$\left|A\right|\left|C\right|={\left|A\right|}^{m}$$
$$\Rightarrow\,\left|C\right|={\left|A\right|}^{m-1}$$
Let $${\Delta}_{i}$$ be the cofactor matrix then
$${\Delta}_{i}={\left({\Delta}_{i-1}\right)}^{m-1}$$ where $$m=3$$
$$\Rightarrow\,{\Delta}_{i}={\left({\Delta}_{i-1}\right)}^{3-1}$$
$$\Rightarrow\,{\Delta}_{i}={\left({\Delta}_{i-1}\right)}^{2}$$
$$\Rightarrow\,{\Delta}_{n}={\left({\Delta}_{n-1}\right)}^{2}={\left({\left({\Delta}_{n-2}\right)}^{2}\right)}^{2}={\left({\left({\left({\Delta}_{n-3}\right)}^{2}\right)}^{2}\right)}^{2}$$ and so on.
$$\Rightarrow\,{\Delta}_{n-1}={\left({\Delta}_{n-2}\right)}^{2}$$
$$\Rightarrow\,{\Delta}_{n-2}={\left({\Delta}_{n-3}\right)}^{2}$$
and so on.
Hence $${\Delta}_{0}={\left({\Delta}_{0}\right)}^{{2}^{n}}$$