Self Studies

Application of Derivatives Test - 12

Result Self Studies

Application of Derivatives Test - 12
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For the curve $$y=3  \sin \theta  \cos  \theta,  x= e^{\theta} \sin \theta,  0  \leq \theta  \leq  \pi$$, the tangent is parallel to x-axis when $$\theta$$ is :
    Solution
    $$y=3\sin { \theta  } \cos { \theta  } $$

    $$\Rightarrow \displaystyle\frac { dy }{ d\theta  } =3(\cos { \theta  } -\sin { \theta  } )(\cos { \theta  } +\sin { \theta  } )$$

    $$x={ e }^{ \theta  }\sin { \theta  } $$

    $$\displaystyle\frac { dx }{ d\theta  } =3{ e }^{ \theta  }(\cos { \theta  } -\sin { \theta  } )$$

    $$\displaystyle\frac { dy }{ dx} = 3{ e }^{ -\theta  }(\cos { \theta  } -\sin { \theta  })$$

    $$\displaystyle\frac { dy }{ dx} =0$$

    $$\Rightarrow \sin { \theta  } =\cos { \theta  } $$

    $$\Rightarrow \displaystyle \theta = \frac{\pi}{4}$$
  • Question 2
    1 / -0
    The tangent at the point $$(2, -2)$$ to the curve, $$x^2y^2-2x=4(1-y)$$ does not pass through the point.
    Solution
    $$x^2y^2-2x=4-4y$$
    $$2xy^2+2y\cdot x^2\cdot\displaystyle\frac{dy}{dx}-2=-4\cdot\frac{dy}{dx}$$
    $$\displaystyle\frac{dy}{dx}(2y\cdot x^2+4)=2-2x\cdot y^2$$
    $$\left.\displaystyle\frac{dy}{dx}\right|_{2, -2}=\displaystyle\frac{2-2\times 2\times 4}{2(-2)\times 4+4}=\frac{+14}{+12}=\frac{7}{6}$$
     eq of tangent :$$(y+2)=\displaystyle\frac{7}{6}(x-2)\Rightarrow 7x-6y=26$$.
    $$(-2,-7)$$ does not satisfy above eq.
  • Question 3
    1 / -0
    If the tangent at $$(1, 7)$$ to the curve $$x^{2} = y - 6$$ touches the circle $$x^{2} + y^{2} + 16x + 12y + c = 0$$ then the value of $$c$$ is
    Solution
    Given equation of curve is $$x^{2}=y-6$$

    $$\Rightarrow y=x^{2}+6$$

    $$\Rightarrow \dfrac{dy}{dx}=2x$$

    Slope of tangent is $$m=\left|\dfrac{dy}{dx}\right|_{(1,7)}=2\times 1=2$$

    Equation of tangent at the point $$(1,7)$$ is given by

    $$(y-7)=2(x-1)$$

    $$\Rightarrow y-7=2x-2$$

    $$\Rightarrow 2x-y+5=0$$

    Given equation of circle is 

    $$x^{2} + y^{2} + 16x + 12y + c = 0$$

    $$\Rightarrow (x+8)^{2}+(y+6)^{2}+c-64-36=0$$

    $$\Rightarrow (x+8)^{2}+(y+6)^{2}=100-c$$

    If the tangent touches the circle, then

    Distance from centre $$=$$ radius

    $$\Rightarrow $$ Distance of $$(-8,-6)$$ from $$2x-y+5=0$$ is the radius

    $$d=\left|\dfrac{2(-8)-(-6)}{\sqrt{4+1}}\right|=\left|\sqrt{5}\right|$$

    $$\Rightarrow Radius=\sqrt{100-c}=\sqrt{5}$$

    $$\Rightarrow c={95}$$
  • Question 4
    1 / -0
    If the tangent to the conic, $$y - 6 = x^2$$ at (2, 10) touches the circle, $$x^2 + y^2 + 8x - 2y = k$$ (for some fixed k) at a point $$(\alpha, \beta)$$; then $$(\alpha, \beta)$$ is;
    Solution
    Given equation of conic is
    $$y - 6 = x^2$$ 
    $$\dfrac{dy}{dx}=2x$$
    Slope of tangent at $$(2,10)$$ is $$4.$$

    Equation of tangent to conic is 
    $$y-10=4(x-2)$$
    $$\Rightarrow y-10=4x-8$$
    $$\Rightarrow y=4x+2$$          .....(1)

    Given equation of circle is 
    $$x^{ 2 }+y^{ 2 }+8x-2y=k$$
    $$\Rightarrow (x+4)^2+(y-1)^2=k+17$$

    Given $$(\alpha, \beta)$$ is a point of tangency for fixed $$k$$
    Radius = Length of tangent from center $$(-4,1)$$
    $$\Rightarrow \sqrt{k+17}=\dfrac{15}{\sqrt{17}}$$
    $$\Rightarrow k+17=\dfrac{225}{17}$$

    So, equation of circle at $$(\alpha, \beta)$$ is 
    $$(\alpha+4)^2+(\beta-1)^2=\dfrac{225}{17}$$

    Now, eqn (1) is tangent to the circle for fixed $$k$$ at $$(\alpha,\beta)$$
    $$\Rightarrow (\alpha+4)^2+(4\alpha+1)^2=\dfrac{225}{17}$$
    $$\Rightarrow 17\alpha^2+16\alpha+17=\dfrac{225}{17}$$
    $$\Rightarrow 289\alpha^2+272\alpha+64=0$$
    $$\Rightarrow \alpha =\dfrac{-8}{17}$$  (Here $$D=0$$)

    So, by (1), $$\beta =\dfrac{2}{17}$$
  • Question 5
    1 / -0
    The set of all values of a for which the function $$f(x) = (a^{2} =- 3a + 2)(\cos^{2}x / 4 - \sin^{2}x / 4) + (a - 1)x + \sin 1$$ does not process critical points is
    Solution
    $$f(x) = (a^{2} =- 3a + 2)(\cos^{2}x / 4 - \sin^{2}x / 4) + (a - 1)x + \sin 1$$
    $$\Rightarrow f(x) = (a - 1)(a - 2)\cos x/2 + (a - 1) x + \sin 1$$
    $$\Rightarrow f'(x) = -\dfrac {1}{2} (a - 1)(a - 2) \sin \dfrac {x}{2} + (a - 1)$$
    $$\Rightarrow f'(x) = (a - 1) \left [1 - \dfrac {(a - 2)}{2}\sin \dfrac {x}{2}\right ]$$
    If $$f(x)$$ does not possess critical points, then $$f'(x)\neq 0$$ for any $$x \epsilon R$$
    $$\Rightarrow (a - 1)\left [1 -\dfrac {(a - 2)}{2} \sin \dfrac {x}{2}\right ]\neq 0$$ for any $$x\epsilon R$$
    $$\Rightarrow a\neq 1$$ and $$1 - \left (\dfrac {a - 2}{2}\right )\sin \dfrac {x}{2} = 0$$
    must not have any solution in $$R$$.
    $$\Rightarrow a\neq 1$$ and $$\sin \dfrac {x}{2} = \dfrac {2}{a - 2}$$ is not solvable in $$R$$.
    $$\Rightarrow a\neq 1$$ and $$\left |\dfrac {2}{a - 2}\right | > 1$$ [For $$a = 2, f(x) = x + \sin 1\therefore f'(x) = 1 \neq 0]$$
    $$\Rightarrow a \neq 1$$ and $$|a - 2| < 2\Rightarrow a\neq 1$$ and $$-2 < a - 2 < 2$$
    $$\Rightarrow a\neq 1$$ and $$0 < a < 4\Rightarrow a\epsilon (0, 1)\cup (1, 4)$$.
  • Question 6
    1 / -0
    What is the $$x$$-coordinate of the point on the curve $$f(x) = \sqrt {x}(7x - 6)$$, where the tangent is parallel to $$x$$-axis?
    Solution
    Given, $$f(x) = \sqrt {x}(7x - 6) = 7x^{3/2} - 6x^{1/2}$$
    Thus $$f'(x) = 7\times \dfrac {3}{2}x^{1/2} - 6\times \dfrac {1}{2} x^{-1/2}$$
    When tangent is parallel to $$x$$ axis $$f'(x) = 0$$.
    Therefore, $$\dfrac {21}{2}x^{1/2} - 3x^{-1/2} = 0$$
    $$\Rightarrow \dfrac {21}{2}\sqrt {x} = \dfrac {3}{\sqrt {x}}$$
    $$\Rightarrow 7x = 2$$
    $$\Rightarrow x = \dfrac {2}{7}$$
  • Question 7
    1 / -0
    Consider the following statements in respect of the function $$f(x) = x^{3} - 1, \quad x\epsilon [-1, 1]$$
    I. $$f(x)$$ is increasing in $$[-1, 1]$$
    II. $$f'(x)$$ has no root in $$(-1, 1)$$.
    Which of the statements given above is/ are correct?
    Solution
    Given the function $$f(x) = x^{3} - 1, \quad x\epsilon [-1, 1]$$
    $$f'(x)=3x^2$$ which is positive for all $$x$$
    and at $$x=0$$, $$f'(x)=0$$, $$f''(x)=0$$
    I. $$f(x)$$ is increasing in $$[-1, 1]$$
    $$f(-1)=-2$$ and $$f(1)=0$$
    Thus $$f(x)$$ is increasing in the given interval.

    II. $$f'(x)$$ has a root , $$x=0$$ in $$(-1, 1)$$.
    $$\therefore $$only I is correct.
  • Question 8
    1 / -0
    If $$\dfrac{x^2}{f(4a)}=\dfrac{y^2}{f(a^2-5)}$$ respresents and ellipse with major axis as y-axis and $$f$$ is a decreasing function, then 
    Solution
    Since y-axis is major axis.
    $$\Rightarrow f(4a) < f(a^2-5)$$
    $$\Rightarrow 4a > a^2-5$$                 (Q $$f$$ is decreasing)
    $$\Rightarrow  a^2-4a - 5 < 0$$
    $$\Rightarrow  a \in (-1, 5)$$
  • Question 9
    1 / -0
    The values of $$\mathrm{x}$$ at which $$\mathrm{f}(\mathrm{x})=\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{x}$$ is stationary are given by
    Solution
    Stationary means $$f'(x)=0$$

    $$f'(x)=cos  x$$

    $$f'(x)=0$$ when $$x=(2n+1)\dfrac {\pi}{2}$$
  • Question 10
    1 / -0

    The number of stationary points of $$\mathrm{f}(\mathrm{x})=\mathrm{s}\mathrm{i}\mathrm{n} \mathrm{x}$$ in $$[0, 2{\pi}]$$ are
    Solution
    $$f'(x)=cos  x$$
    $$f'(x)=0$$  when $$x=\dfrac {\pi}{2}, \dfrac {3\pi}{2}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now