Self Studies

Application of Derivatives Test - 14

Result Self Studies

Application of Derivatives Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The slope of the curve $$\displaystyle y=\sin x+\cos ^{2}x $$ is zero at the point where -
    Solution
    $$y=\sin x+\cos^2x$$
    $$\cfrac{dy}{dx}=\cos x-2\cos x .\sin x$$
    For slope to be zero, $$\cfrac{dy}{dx}=0$$
    $$\Rightarrow \cos x-2\cos x .\sin x=0\Rightarrow \cos x(1-2\sin x)=0$$
    $$\Rightarrow \cos x=0$$ or $$\sin x=\cfrac{1}{2}$$
    $$\Rightarrow x=\cfrac{\pi}{2}, \cfrac{\pi}{6}$$ in first quadrant.
    Hence, option 'B' is correct.
  • Question 2
    1 / -0
    The slope of the tangent to the curve $$\displaystyle y=\sin x$$ at point $$(0, 0)$$ is
    Solution
    Given $$y=\sin x$$
    $$\Rightarrow \cfrac{dy}{dx}=\cos x$$
    Thus, slope of tangent at $$(0,0)$$ is,
    $$m=\left (\cfrac{dy}{dx}\right )_{(0.0)}=\cos (0)=1$$
    Hence, option 'A' is correct.
  • Question 3
    1 / -0
    If tangent at a point of the curve $$y = f(x)$$ is perpendicular to $$2x - 3y = 5$$ then at that point $$\displaystyle \dfrac{dy}{dx}$$ equals
    Solution
    We know slope of tangent to the curve is $$\displaystyle \frac{dy}{dx}$$
    Now slope of line $$2x - 3y = 5$$ is $$\displaystyle \frac{2}{3}$$
    and tangent to $$y=f(x)$$ is perpendicular to this line.
    $$\displaystyle \therefore $$ $$\displaystyle \frac{dy}{dx}=-\frac{3}{2} $$
    Hence, option 'D' is correct.
  • Question 4
    1 / -0
    The inclination of the tangent w.r.t. $$x$$ - axis to the curve $$\displaystyle x^{2}+2y=8x-7$$ at the point $$x = 5$$ is
    Solution
    Given, $$\displaystyle x^{2}+2y=8x-7$$
    $$\Rightarrow 2y=8x-x^2-7$$
    $$\therefore 2\cfrac{dy}{dx}=8-2x\Rightarrow \cfrac{dy}{dx}=4-x$$
    Thus slope of tangent to the given curve at $$x=5$$ is, $$m=-1$$
    If $$'\theta '$$ is the inclination of the tangent w.r.t $$x-axis$$ then,
    $$\tan\theta=-1\Rightarrow \theta=\cfrac{3\pi}{4}$$
    Hence, option 'C' is correct.
  • Question 5
    1 / -0
    At what point the tangent to the curve $$\displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}$$ is perpendicular to the $$x$$ - axis
    Solution
    Let the point be $$P\displaystyle \left ( x_{1},y_{1} \right )$$
    Now $$\displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}$$
    Differentiating w.r.t $$x$$
    $$\displaystyle \frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{y}}\times \frac{dy}{dx}=0 $$
    $$\displaystyle \frac{dy}{dx}=-\sqrt{\frac{y}{x}}$$
    Thus slope of tangent at P is $$=\displaystyle \left ( \frac{dy}{dx} \right )_{\left ( x_{1},y_{1} \right )}=-\sqrt{\frac{y_{1}}{x_{1}}}$$
    if tangent $$\displaystyle \perp $$ to x axis then $$\displaystyle \frac{dy}{dx}=\frac{1}{0} $$
    $$\displaystyle \therefore  x_1 = 0\Rightarrow  y_1 = a$$
    Therefore, required   point is  $$(0, a)$$
    Hence, option 'D' is correct.
  • Question 6
    1 / -0
    The slope of the tangent to the curve $$\displaystyle y=-x^{3}+3x^{2}+9x-27$$ is maximum when x equals.
    Solution
    Given, $$\displaystyle y=-x^{3}+3x^{2}+9x-27$$
    Slope at any point on thegiven curve is  $$m= \cfrac{dy}{dx}=-3x^2+6x+9$$
    Now for maximum value of slope we must have $$\cfrac{dm}{dx}=0=-6x+6\Rightarrow x = 1$$
  • Question 7
    1 / -0
    The line $$y = x + 1$$ is a tangent to the curve $$ y^2 = 4x$$ at the point.
    Solution
    We have $$y=x+1, y^2=4x$$
    Solving these, $$\Rightarrow (x+1)^2=4x\Rightarrow x^2-2x+1=0$$
    $$\Rightarrow (x-1)^2=0\Rightarrow x=1\therefore y  = (x+1)_{x=1}=2$$
    Thus required point of contact is $$(1,2)$$
  • Question 8
    1 / -0
    The rate of change of the area of a circle with respect to its radius $$r$$ at $$r = 6 cm$$ is.
    Solution
    The area $$(A)$$ of circle  with radius $$r$$ is, $$A =\pi r^2$$
    Thus rate of change of area of circle with radius is,
    $$\displaystyle\Rightarrow \frac{dA}{dr}=2\pi r$$.
    Hence at $$r=6$$ cm $$,\displaystyle\frac{dA}{dr}=12\pi$$ cm
  • Question 9
    1 / -0
    The side of a square sheet is increasing at the rate of $$4 cm$$ per minute. The rate by which the area increasing when the side is $$8 cm$$ long is.
    Solution
    Given $$\dfrac{dx}{dt}=4 cm/min$$, $$x=8 cm$$
    Area of square $$A = x^2$$

    $$\dfrac {dA}{dt}=2x\dfrac {dx}{dt}$$

    $$\Rightarrow \dfrac{dA}{dt}= 2 \times  8 \times  4 = 64 cm^2/minute$$
  • Question 10
    1 / -0
    The slope of the normal to the curve $$y = 2x^2+ 3 \sin x$$ at $$x = 0$$ is. 
    Solution
    $$y = 2x^2+ 3 \sin x$$
    $$\cfrac{dy}{dx} = 4x+3\cos x$$
    Thus slope of tangent at $$x=0$$ is $$4(0)+3\cos 0=3$$
    Hence slope of normal at the same point is $$-\cfrac{1}{m}=-\cfrac{1}{3}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now