Self Studies

Application of Derivatives Test - 15

Result Self Studies

Application of Derivatives Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The slope of the tangent to the curve $$y=\displaystyle\int_{0}^{x}\dfrac{dt}{1+t^3}$$ at the point where x=1 is 
    Solution
    $$\dfrac{dy}{dx}=\dfrac{1}{1+x^{3}}$$

    $$m=\left ( \dfrac{dy}{dx} \right )x=1=\dfrac{1}{1+1}=\dfrac{1}{2}$$
  • Question 2
    1 / -0
    Consider the curve $$y = e^{2x}$$.What is the slope of the tangent to the curve at (0, 1) ?
    Solution
    We know that slope of tangent to a curve $$y=f(x)$$ at a point $$(x_1,y_1)$$ equals $$f^{'}(x_1)$$
    $$\Rightarrow $$ Slope of tangent to the curve $$y=e^{2x}$$ equals $$\cfrac{d(e^{2x})}{dx} =2e^{2x}$$ 
    $$\Rightarrow $$Slope of tangent at $$(0,1)=f^{'}(0)=2$$

  • Question 3
    1 / -0
    If a tangent to the curve $$\displaystyle y=6x-{ x }^{ 2 }$$ is parallel to the line $$\displaystyle 4x-2y-1=0$$, then the point of tangency on the curve is:
    Solution
    $$y=6x-x^2$$
    $$\Rightarrow y' =6-2x\ as\ tangent \ is\  parallel \  to \ line  4x-2y-1=0  \  $$ slope $$=2$$
    $$\Rightarrow 6-2x=2$$
    $$\Rightarrow x=2$$
    So $$y=6\cdot 2-2^2=8$$
    Hence the point of tangency is $$(2,8)$$
  • Question 4
    1 / -0
    The function $$x^{x}$$ is increasing, when
    Solution
    Let $$y = x^{x}$$
    $$\Rightarrow \dfrac {dy}{dx} = x^{x}(1 + \log x)$$
    For increasing function, $$\dfrac {dy}{dx} > 0$$
    $$\Rightarrow x^{x} (1 + \log x) > 0$$
    $$\Rightarrow 1 + \log x > 0$$
    $$\Rightarrow \log_{e} x > \log_{e} \dfrac {1}{e}$$
    $$\Rightarrow x > \dfrac {1}{e}$$
    Therefore, the function is increasing, when $$x > \dfrac {1}{e}$$.
  • Question 5
    1 / -0
    The slope of the tangent to the curve $$y = \int_{0}^{x} \dfrac {dt}{1 + t^{3}}$$ at the point where $$x = 1$$ is
    Solution
    $$m=\dfrac {dy}{dx} = \dfrac {1}{1 + x^{3}}$$
    $$m = \left (\dfrac {dy}{dx}\right )_ {x = 1} = \dfrac {1}{1 + 1} = \dfrac {1}{2}$$
  • Question 6
    1 / -0
    If tangent to the curve $$\displaystyle x={ at }^{ 2 },y=2at$$ is perpendicular to $$x$$-axis, then its point of contact is:
    Solution
    We have, $$x=at^2\Rightarrow \dfrac{dx}{dt}=2at$$
    And $$y=2at\Rightarrow \dfrac{dy}{dt}=2a$$
    $$\therefore \dfrac{dy}{dx}=\dfrac{1}{t}=\infty$$, for tangent to the curve perpendicular to $$x-$$axis
    $$\Rightarrow t = 0$$
    so the point of contact is $$(at^2,2at)=(0,0)$$
  • Question 7
    1 / -0
    Equation of normal drawn to the graph of the function defined as $$f\left( x \right) =\dfrac { \sin { { x }^{ 2 } }  }{ x } ,x\neq 0$$ and $$f\left( 0 \right) =0$$ at the origin is
    Solution
    Differentiating $$f(x)$$ w.r.t $$x$$, we get
    $$ f'(x)=\dfrac{x\cos(x^2).2x -\sin x^2.1}{x^2}$$
    $$ \Rightarrow f'(x)= \dfrac{2x^2\cos x^2- \sin x^2}{x^2} $$

    Find the value of $$f'(x)$$ at $$x=0$$, we get
    $$f'(x)$$ is in $$\dfrac{0}{0}$$ indeterminate form

    Apply L'Hospital rule 
    $$ \lim_{x \to0}f'(x)= \dfrac{2x\cos x^2-4x^2\sin x^2}{2x}$$
    $$ \Rightarrow \lim_{x\to0} f'(x)=\dfrac{2x\times(\cos x^2-2x^2\sin x^2)}{2x}$$
    $$\Rightarrow \lim_{x\to0} \cos x^2- 2x^2\sin x^2$$
    $$ \Rightarrow 1 - 0$$
    $$ \Rightarrow 1$$

    The slope of the tangent at $$x=0$$ on the curve $$ f(x)=\dfrac{sin x^2}{x}$$ is $$1$$. 

    We know that, product of slope of tangent and normal is $$-1$$.
    Therefore, $$ m_1\times m_2 =-1$$ 
    where, $$ m_1 =1$$
    Hence, $$ m_2 = -1$$

    Slope of normal  $$ = -1$$
    $$ y =mx+c$$
    Here, $$m=-1$$

    To find c: at $$x=0$$ we have $$y=f(x)=0$$
    Substituting these values in above equation of a line, we get 
    $$ 0 = -1 \times 0 +c$$
    $$ \Rightarrow c=0$$

    Therefore, equation of normal is $$y=-x$$ or $$y+x=0$$

    Hence, correct answer id option (A)
  • Question 8
    1 / -0
    The gradient of the tangent line at the point $$(a cos \alpha, a sin \alpha)$$ to the circle $$x^2 + y^2 = a^2$$, is
    Solution
    Equation of the circle, $$x^2+y^2=a^2$$

    At a point $$(a \cos \alpha, a \ sin \alpha)$$

    Gradient of radius $$= \dfrac{y_2-y_1}{x_2-x_1}$$

    $$= \dfrac{a \ sin \alpha-0}{a \ cos \alpha-0}$$

    $$=\ tan \alpha $$

    gradient of radius $$\times$$ gradient of tangent = -1

    $$\ tan \alpha \times$$ gradient of tangent = -1

    $$\Rightarrow $$gradient of tangent$$ = -\ tan \alpha $$

    $$\Rightarrow $$gradient of tangent$$ = \ tan (\pi - \alpha)$$


  • Question 9
    1 / -0
    Consider the following statements:
    1. $$\dfrac {dy}{dx}$$ at a point on the curve gives slope of the tangent at that point.
    2. If $$a(t)$$ denotes acceleration of a particle, then $$\displaystyle \int a(t) dt + c$$ give velocity of the particle.
    3. If $$s(t)$$ gives displacement of a particle at time $$t$$, then $$\dfrac {ds}{dt}$$ gives its acceleration at that instant.
    Which of the above statements is/ are correct?
    Solution

    Let's  check  each  statement  one  by  one.

     1. $$\dfrac { dy }{ dx }$$   at  a  particular  point  will  give  slope  of  tangent  at  that  point   so  this  statement  is  true.

     2. If $$ a(t)$$  denote  acceleration  of  a  particle,  then  $$\int a(t)dt+c$$  give  velocity  of  the  particle  so  this  statement  is  true.

     3.  If  $$s(t)$$  gives  displacement  of  a    particle  at  time ‘t’,  then  $$\dfrac { ds }{ dt }$$   gives  velocity  not  acceleration  so  this  statement  is  false.

    So Statement 1 and 2 are correct.

  • Question 10
    1 / -0
    If the product of the slope of tangent to curve at $$(x,y)$$ and its y-co-ordinate is equal to the x-co-ordinate of the point, then it represent.
    Solution
    Let slope of a tangent at point $$(x,y)$$ to the curve is $$=\cfrac { dy }{ dx } $$
    $$\therefore y\cfrac { dy }{ dx } =x$$ (given)
    $$\therefore ydy=xdx\quad $$
    Integrating both side $$\int { y } dy=\int { x } dx$$
    $$\therefore \cfrac { { y }^{ 2 } }{ 2 } =\cfrac { { x }^{ 2 } }{ 2 } +c'$$
    $$\therefore { y }^{ 2 }-{ x }^{ 2 }+2c'$$
    $$\therefore { y }^{ 2 }-{ x }^{ 2 }=c$$
    where $$2c'=c$$
    Which is a rectangular hyperbola
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now