Self Studies

Application of Derivatives Test - 16

Result Self Studies

Application of Derivatives Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The graph of the function $$f(x) = 2x^3 - 7$$ goes :
    Solution
    Given $$f(x) =2x^{3}-7$$

    $$\Rightarrow f^{'} (x) =6x^{2}>0\Rightarrow$$ strictly increasing function 

    $$\therefore $$Function is strictly increasing function 

    And $$f(0)=0$$ when $$x=\sqrt[3]{\dfrac{7}{2} }$$

    $$\Rightarrow $$Graph will go to infinity to the right as $$x\rightarrow \infty $$

    $$\Rightarrow $$Graph will go to minus infinity to the left as $$x\rightarrow - \infty $$

    $$\therefore $$Graph goes up to the right and down to the left 

    Option 'A' is correct 

  • Question 2
    1 / -0
    The length of the segment of the tangent line to the curve $$x=a\cos ^{ 3 }{ t } ,y=\sin ^{ 3 }{ t } $$, at any point on the curve cut off by the coordinate axes is
  • Question 3
    1 / -0
    Find the approximate error in the volume of a cube with edge $$x$$ cm, when the edge is increased by $$2\%$$
    Solution
    in a mutiplication while multiplying we have to add the percentage errors 

    so if the edge of the cube is $$x$$cm then the volume will be $${ x }^{ 3 }$$

    but for errors we have to add the percentage 

    therefore the total error  percentage now becomes $$6\%$$

    therefore the error is increased by $$4\%$$
  • Question 4
    1 / -0
    Which one of the following be the gradient of the hyperbola $$xy=1$$ at the point $$\left(t,\dfrac{1}{t}\right)$$
    Solution
    Given the hyperbola
    $$xy=1$$.
    Now differentiate both sides with respect to $$x$$ we get,
    $$y+x\dfrac{dy}{dx}=0$$
    or, $$\dfrac{dy}{dx}=-\dfrac{y}{x}$$
    Now the gradient of the given hyperbola at $$\left(t,\dfrac{1}{t}\right)$$ is 
    $$\left.\dfrac{dy}{dx}\right|_{\left(t,\dfrac{1}{t}\right)}=-\dfrac{1}{t^2}$$
  • Question 5
    1 / -0
    The local maximum value of $$x{(1-x)}^{2},0\le x\le 2$$ is
    Solution
    $$\begin{array}{l} Let\, f\left( x \right) =x{ \left( { 1-x } \right) ^{ 2 } } \\ f'\left( x \right) -1{ \left( { 1-x } \right) ^{ 2 } }+x\times 2\left( { 1-x } \right) \times -1 \\ ={ \left( { 1-x } \right) ^{ 2 } }-2x\left( { 1-x } \right)  \end{array}$$

    $$\begin{array}{l} f''\left( x \right) =-2\left( { 1-x } \right) -2\left[ { 1-x+x\times -1 } \right]  \\ =-2+2x-2\left[ { 1-x-x } \right]  \\ =-2+2x-2+4x \\ =6x-4 \end{array}$$

    For critical points, $$F'\left( x \right) = 0$$ 
    $$\begin{array}{l} \Rightarrow { \left( { 1-x } \right) ^{ 2 } }-2x\left( { 1-x } \right) =0 \\ \Rightarrow \left( { 1-x } \right) \left( { 1-x-2x } \right) =0 \\ \Rightarrow \left( { 1-x } \right) \left( { 1-3x } \right) =0 \\ \Rightarrow \left( { x-1 } \right) \left( { 3x-1 } \right) =0 \\ x=1 ,\quad \frac { 1 }{ 3 }  \end{array}$$

    $$f'\left( 1 \right) =6\left( 1 \right) -4=6-4=2>0\, \min  imum$$
    $$f''\left( { \dfrac { 1 }{ 3 }  } \right) =6\times \dfrac { 1 }{ 3 } -4=2-4=-2<0\, { { miximum } }$$

    $$f\left( { \dfrac { 1 }{ 3 }  } \right) =\dfrac { 1 }{ 3 } { \left( { 1-\dfrac { 1 }{ 3 }  } \right) ^{ 2 } }=\dfrac { 1 }{ 3 } \times \dfrac { 4 }{ 9 } =\dfrac { 4 }{ { 27 } } $$

    So, $$x = \dfrac{1}{3}$$  is the point of local Maximum and the local maximum value is $$\dfrac{4}{{27}}$$

  • Question 6
    1 / -0
    Function $$f(x)=x-\ell nx$$ is decreasing, when
    Solution
    $$f\left( x \right) = x - \ln x$$
    $$f'\left( x \right) = 1 - \frac{1}{x}$$
    $$ = \frac{{x - 1}}{x}$$
    $$f'\left( x \right)\,is\,not\,define\,at\,x = 0$$
    $$For\,critical\,po{\mathop{\rm int}} s\,$$
    $$f'\left( x \right) = 0$$
    $$ = \frac{{x - 1}}{x} = 0$$
    $$ = x - 1 = 0$$
    $$x = 1$$
    $$So,\,critical\,po{\mathop{\rm int}} s\,are\,x = 1\,and\,x = 0$$
    $$f'\left( x \right) = \frac{{x - 1}}{x} > 0\ for\ all x \in \left( {1,\infty } \right)$$
    $$and\,f'\left( x \right) = \frac{{x - 1}}{x} < 0 \ for\ all \left( {0,1} \right)$$
    $$so,\,f\left( x \right)\,is\,decreasing\,\forall x \in \left( {0,1} \right)$$
  • Question 7
    1 / -0
    The slope of the tangent to the curve $$xy+ax-by=0$$ at the point $$(1,1)$$ is $$2$$, then value of $$a$$ and $$b$$ are respectively:
    Solution
    $$xy+ax-by=0$$
    $$(1,1)$$ lies on curve
    $$1+a-b=0$$ 
    $$a-b=-1$$ ....... $$(i)$$
    $$y+x\dfrac { dy }{ dx } +a-b\dfrac { dy }{ dx } =0$$ 
    $$1+2+a-2b=0$$ 
    $$a-2b=-3$$ ........ $$(ii)$$
    Solving $$(i)$$ and $$(ii)$$, we get
    $$a=1,b=2$$
  • Question 8
    1 / -0
    The interval in which the  function $$f(x) = {x^3}$$ increases less rapidly than $$\,g(x) = 6{x^2} + 15x + 5$$ is :
    Solution
    $${\text{Increasing}}\;{\text{rate  =  }}\dfrac{d}{{dx}}\left( {{f_1}{x_1}} \right)$$
    $${\text{f}}\left( x \right) = 6{x^2} + 15x + 5$$
    $${\text{f}}\left( x \right) = 12x + 15$$
    $${\text{ }}\dfrac{d}{{dx}}{\left( x \right)^3} < \;\dfrac{d}{{dx}}\left( {6{x^2} + 15x + 5} \right)$$
    $${\text{  3}}{{\text{x}}^2}{\text{  <  12x  +  15}}$$
    $${\text{3}}{{\text{x}}^2} - 12x - 15 < 0$$
    $${x^2} - 4x - 5 < 0$$
    $${x^2} - 5x + x - 5 < 0$$
    $$\left( {x + 1} \right)\left( {x - 5} \right) < 0$$
    $$x \in \left( { - 1,5} \right)$$
  • Question 9
    1 / -0
    The values of $$x$$ for which the tangents to the curves $$y=x\cos{x},y=\cfrac{\sin{x}}{x}$$ are parallel to the axis of $$x$$ are roots of  (respectively)
    Solution
    $$y=x\cos x$$

    $$\dfrac{dy}{dx}=\cos x-x\sin x=0$$

    $$\implies x=\cot x$$

    $$y=\dfrac{\sin x}{x}$$

    $$\dfrac{dy}{dx}=\dfrac{x\cos x-\sin x}{x^{2}}=0$$

    $$\implies x=\tan x$$
  • Question 10
    1 / -0
    A curve with equation of the form $$y=a{x}^{4}+b{x}^{3}+cx+d$$ has zero gradient at the point $$(0,1)$$ and also touches the x-axis at the point $$(-1,0)$$ then
    Solution
    given $$y=ax^4+bx^3+cx+d$$
    $$y_{}{'}=4ax^3+3bx^2+c=0$$ at (0,1)
    so $$c=0$$
    curve passes through point (-1,0)
    so $$0=a-b-c+d=>a+d=b$$
    here $$y_{}{'}<0$$ for $$x<-1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now