Self Studies

Application of Derivatives Test - 19

Result Self Studies

Application of Derivatives Test - 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For the parabola $$y^{2}=8x$$, tangent and normal are drawn at $$P(2, 4)$$ which meet the axis of the parabola in $$A$$ and $$B$$, then the length of the diameter of the circle through $$A, P, B$$ is
    Solution
    Considering the equation of the parabola
    $$y^{2}=8x$$
    The axis of symmetry is the positive $$x-$$axis.
    By, differentiating with respect to $$x$$, we get 
    $$2y.y'=8$$
    $$y'=\dfrac{4}{y}$$
    Hence, $$y'_{(2,4)}=1$$
    Thus slope of the tangent at the point of contact $$P(2,4)$$ is $$1$$ while that of normal is $$-1$$.
    Hence, equation of the tangent will be 
    $$\dfrac{y-4}{x-2}=1$$
    $$-x+y=2$$   ...(i)
    Hence, the tangent meets the x axis at $$(-2,0)$$
    Therefore, $$A=(-2,0)$$.

    Equation of normal will be 
    $$\dfrac{y-4}{x-2}=-1$$
    $$x+y=6$$   ...(ii)
    Hence the normal meets the x axis at $$(6,0)$$.
    Thus, $$B=(6,0)$$

    Therefore the three points through which the circle passes are 
    $$(-2,0),(6,0),(2,4)$$
    Now let the equation of the circle be 
    $$(x-h)^{2}+(y-k)^{2}=r^{2}$$
    Therefore 
    $$(-2-h)^{2}+k^{2}=r^{2}$$
    $$\rightarrow (2+h)^{2}+k^{2}=r^{2}$$
    $$(6-h)^{2}+k^{2}=r^{2}$$
    Subtracting {ii} from {i}, we get 
    $$2h-4=0$$
    $$h=2$$
    Therefore the equation of the circle reduces to 
    $$(x-2)^{2}+(y-k)^{2}=r^{2}$$
    Now 
    $$(2-2)^{2}+(4-k)^{2}=r^{2}$$
    $$\rightarrow (4-k)^{2}=r^{2}$$
    $$(6-2)^{2}+k^{2}=r^{2}$$
    $$\rightarrow 16+k^{2}=r^{2}$$
    Subtracting i from ii, we get 
    $$16+k^{2}-(k-4)^{2}=0$$
    $$16+(2k-4)(4)=0$$
    $$4+2k-4=0$$
    $$k=0$$
    Thus the centre of the circle lies at $$C=(2,0)$$.
    Hence the radius of the circle is 
    $$CA=CP=CB$$
    Now 
    $$CA=\sqrt{(2-(-2))^{2}+0^{2}}$$
    $$=2-(-2)$$
    $$=4$$
    $$=r$$

    Hence, the diameter of the circle is $$8$$ units.
  • Question 2
    1 / -0
    I. lf $$f'(\mathrm{a})>0$$ then $$\mathrm{f}$$ is increasing at $$\mathrm{x}=\mathrm{a}$$
    II:  If f is increasing at $$\mathrm{x}=\mathrm{a}$$ then $$f'(\mathrm{a})$$ need not to be positive
    Solution
    $$f(x)$$ is increasing when $$f'(x)>0$$
  • Question 3
    1 / -0
    The stationary point of $$\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}$$ is
    Solution
    $$f'(x)=e^x-e^{-x}$$
    $$f'(x)=0$$  at  $$x=0$$
    $$f(0)=2$$
  • Question 4
    1 / -0
    $$\mathrm{f}(\mathrm{x})=(\sin^{-1}\mathrm{x})^{2}+(\cos^{-1}\mathrm{x})^{2}$$ is stationary at
    Solution
    $$f'(x)=2 sin^{-1}(x)\dfrac {1}{\sqrt {1-x^2}}+2 cos^{-1}(x)(\dfrac {-1}{\sqrt {1-x^2}})$$
    $$=2\dfrac {1}{\sqrt{1-x^2}}(sin^{-1}(x)-cos^{-1}(x))$$
    $$f'(x)=0$$ when $$x=\dfrac {1}{\sqrt 2}$$
  • Question 5
    1 / -0
    The arrangment of the slopes of the normals to the curve  $$y=e^{\log(cosx)}$$ in the ascending order at the points given below.
    $$A) \displaystyle x=\frac{\pi}{6},  B) \displaystyle x=\frac{7\pi}{4},  C)x=\frac{11\pi}{6},  D)x=\frac{\pi}{3}$$
    Solution
    We have,  $$y = e^{\log \cos x} =(\cos x)^{\log e}[\because a^{\log_bc} =c^{\log_ba}] =\cos x$$
    $$\Rightarrow \dfrac{dy}{dx} =-\sin x=m$$(say)
    Thus slope of normal to the given curve at any point is,
    $$m'=- \dfrac{1}{m}=\dfrac{1}{\sin x}$$
    Now,  $$m'_{\frac{\pi}{6}}=2, m'_{\frac{7\pi}{4}}=-\sqrt{2}, m'_{\frac{\pi}{6}}=-2,m'_{\frac{\pi}{6}}=\dfrac{\sqrt{3}}{2}$$
    Clearly ascending order is, $$C,B,D,A$$
    Note: Given function is not defined where $$\cos x<0$$
  • Question 6
    1 / -0
    Assertion(A): The tangent to the curve $$y=x^{3}-x^{2}-x+2$$ at (1, 1) is parallel to the x axis.
    Reason(R): The slope of the tangent to the above curve at (1, 1) is zero.
    Solution
    $$y^{1}=3x^{2}-2x-1$$
    $$y^{1}|_{x=1}=0=m$$
    $$m=0$$
    $$\therefore$$ the curve is parallel to x-axis.
  • Question 7
    1 / -0
    Assertion A: The curves $$x^{2}=y,\ x^{2}=-y$$  touch each other at (0, 0).
    Reason R: The slopes of the tangents at (0, 0) for both the curves are equal.
    Solution
    $$y'=2x$$
    $$y'|_{x=0}=0=m_{1}$$
    $$y'=-2x$$
    $$y'|_{x=0}=0=m_{2}$$
    $$m_{1}=m_{2}$$
    $$\therefore$$ both the curve touches each other
  • Question 8
    1 / -0
    Match the points on the curve  $$2y^{2}=x+1$$ with the slope of normals at those points and choose 
    the correct answer.
    Point
    Slope of normal
    I : $$(7, 2)$$

    $$a){-4\sqrt{2}}$$

    II: $$(0, \displaystyle \frac{1}{\sqrt{2}})$$

    $$b) -8$$
    III : $$(1, 1)$$
    $$c) -4$$
    IV:  $$(3, \sqrt{2})$$


    $$d){-2\sqrt{2}}$$



    Solution
    $$\displaystyle y'=\frac{1}{4y}=m$$

    Slope of normal $$m'=-4y$$

    For given points slope is 
    (1) $$m'_{1}=-4\times 2 ==-8$$
    (2) $$m'_{2}=-4\times \dfrac{1}{\sqrt 2}=-2\sqrt{2}$$
    (3) $$m'_{3}=-4\times 1=-4$$
    (4) $$m'_{4}=-4\times {\sqrt 2}=-4\sqrt{2}$$

    Option A is correct answer
  • Question 9
    1 / -0
    P(1, 1) is a point on the parabola  $$y=x^{2}$$ whose vertex is A. The point on the curve at which the tangent drawn is parallel to the chord  $$\overline{AP}$$   is
    Solution
    $$tan \theta =\dfrac{(1-0)}{(1-0)}=1$$
    $${y}'=2x$$
    $$2x=1$$
    $$x=\dfrac{1}{2}, y=\dfrac{1}{4}$$
  • Question 10
    1 / -0
    lf the parametric equation of a curve given by $$x=e^{t}\cos t,\ y=e^{t}\sin t$$, then the tangent to the curve at the point $$t=\dfrac{\pi}{4}$$ makes with axis of $$x$$ the angle.
    Solution
    $$at\ t={\pi}/{4}$$
    $$y=e^{t}sint$$
    $$\dfrac{dy}{dl}=e^{t}(sin\ t+cos\ t)$$
    $$\dfrac{dx}{dl}=d^{t}(cos\ t+sin\ t)$$
    $$\dfrac{dy}{dx}=\dfrac{sin \ t+cos\ t}{cos\ t-sin\ t}$$
    $$= \alpha$$
    $$\therefore tan^{-1}(\infty)={\pi}/{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now