Considering the equation of the parabola
$$y^{2}=8x$$
The axis of symmetry is the positive $$x-$$axis.
By, differentiating with respect to $$x$$, we get
$$2y.y'=8$$
$$y'=\dfrac{4}{y}$$
Hence, $$y'_{(2,4)}=1$$
Thus slope of the tangent at the point of contact $$P(2,4)$$ is $$1$$ while that of normal is $$-1$$.
Hence, equation of the tangent will be
$$\dfrac{y-4}{x-2}=1$$
$$-x+y=2$$ ...(i)
Hence, the tangent meets the x axis at $$(-2,0)$$
Therefore, $$A=(-2,0)$$.
Equation of normal will be
$$\dfrac{y-4}{x-2}=-1$$
$$x+y=6$$ ...(ii)
Hence the normal meets the x axis at $$(6,0)$$.
Thus, $$B=(6,0)$$
Therefore the three points through which the circle passes are
$$(-2,0),(6,0),(2,4)$$
Now let the equation of the circle be
$$(x-h)^{2}+(y-k)^{2}=r^{2}$$
Therefore
$$(-2-h)^{2}+k^{2}=r^{2}$$
$$\rightarrow (2+h)^{2}+k^{2}=r^{2}$$
$$(6-h)^{2}+k^{2}=r^{2}$$
Subtracting {ii} from {i}, we get
$$2h-4=0$$
$$h=2$$
Therefore the equation of the circle reduces to
$$(x-2)^{2}+(y-k)^{2}=r^{2}$$
Now
$$(2-2)^{2}+(4-k)^{2}=r^{2}$$
$$\rightarrow (4-k)^{2}=r^{2}$$
$$(6-2)^{2}+k^{2}=r^{2}$$
$$\rightarrow 16+k^{2}=r^{2}$$
Subtracting i from ii, we get
$$16+k^{2}-(k-4)^{2}=0$$
$$16+(2k-4)(4)=0$$
$$4+2k-4=0$$
$$k=0$$
Thus the centre of the circle lies at $$C=(2,0)$$.
Hence the radius of the circle is
$$CA=CP=CB$$
Now
$$CA=\sqrt{(2-(-2))^{2}+0^{2}}$$
$$=2-(-2)$$
$$=4$$
$$=r$$
Hence, the diameter of the circle is $$8$$ units.