Self Studies

Application of ...

TIME LEFT -
  • Question 1
    1 / -0

    lf the chord joining the points where $$x= p,\ x =q$$ on the curve $$y=ax^{2}+bx+c$$ is parallel to the tangent drawn to the curve at $$(\alpha, \beta)$$ then $$\alpha=$$

  • Question 2
    1 / -0

    The arrangement of the following curves in the ascending order of slopes of their tangents at the given points.
    $$A) \displaystyle y=\frac{1}{1+x^{2}}$$ at $$x=0$$

    $$B) y=2e^{\frac{-x}{4}},$$ where it cuts the y-axis
    $$C) y= cos(x)$$ at $$\displaystyle x=\frac{-\pi}{4}$$
    $$D) y=4x^{2}$$ at $$x=-1$$

  • Question 3
    1 / -0

    Observe the following lists for the curve $$y=6+x-x^{2}$$ with the slopes of tangents at the given points; I, II, III, IV

    Point
    Tangent slope
    I: $$(1, 6)$$
    a) $$3$$
    II: $$(2, 4)$$
    b) $$5$$
    III: $$(-1, 4)$$
    c) $$-1$$
    IV: $$(-2, 0)$$
    d) $$-3$$

  • Question 4
    1 / -0

    The point on the hyperbola $$y = \dfrac {x - 1}{x + 1}$$ at which the tangents are parallel to $$y = 2x + 1$$ are

  • Question 5
    1 / -0

    The number of tangents to the curve $$x^{3/2}+y^{3/2}=a^{3/2}$$, where the tangents are equally inclined to the axes, is

  • Question 6
    1 / -0

    The points on the hyperbola $$x^{2}-y^{2}=2$$ closest to the point (0, 1) are

  • Question 7
    1 / -0

    If the circle $$x^2 + y^2 + 2gx + 2fy + c =0$$ is touched by y = x at P in the first quadrant, such that $$OP = 6 \sqrt2$$, then the value of $$c$$ is

  • Question 8
    1 / -0

    lf the tangent to the curve $$f(x)=x^{2}$$ at any point $$(c, f(c))$$ is parallel to the line joining points $$(a, f(a))$$ and $$(b,f(b))$$ on the curvel then $$a,\ c,\ b$$ are in

  • Question 9
    1 / -0

    $$\Delta (x)=\begin{vmatrix}
    \sin  x & \cos  x  &\sin  2x+\cos  2x \\
    0 &1  &1 \\
    1 &0  &-1
    \end{vmatrix}$$

    $${\Delta }'(x)$$ vanishes at least once in

  • Question 10
    1 / -0

    For the curve $$ y=3\sin \theta\cos\theta,  x=e^{\theta}\sin \theta,  0\leq \theta\leq\pi$$; the tangent is parallel to $$x$$ -axis when $$\theta$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now