Self Studies

Application of Derivatives Test - 22

Result Self Studies

Application of Derivatives Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x+ 4y=14$$ is a normal to the curve $$y^2=\alpha x ^3-\beta $$ at $$(2,3)$$, then the value of $$\alpha+\beta$$ is
    Solution
    Given equation of curve is 
    $$y^2=\alpha x ^3-\beta $$
    Since, it passes through (2,3) 
    $$4=8\alpha -\beta$$
    $$\displaystyle \frac{dy}{dx}=\frac{3\alpha x^2}{2y}$$
    Slope of tangent at (2,3) is $$2\alpha$$
    Slope of normal  at $$\displaystyle (2,3)= -\frac{1}{2\alpha}$$
    Given equation of normal is $$x+4y=14$$
    Slope of normal is $$-\cfrac{1}{4}$$
    $$\Rightarrow \alpha =2$$
    $$\Rightarrow \beta=7$$
    Hence $$\alpha+\beta =9$$
  • Question 2
    1 / -0
    The slope of the tangent to the curve $$y= \sqrt {4-x^2}$$ at the point where the ordinate and the abscissa are equal is
    Solution
    Given equation of curve is $$y= \sqrt {4-x^2}$$
    $$y^{2}=4-x^{2}$$
    $$\displaystyle \Rightarrow \frac{dy}{dx}=-\frac{x}{y}$$
    Let $$P(x_1,y_1)$$ be the point on the curve such that $$x_1=y_1$$
    So, slope of tangent to curve at P is  $$-1$$.
  • Question 3
    1 / -0
    The curve given by $$x+y=e^{xy}$$ has a tangent parallel to the y-axis at the point
    Solution
    Given equation of curve is $$x+y=e^{xy}$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{y-1}{1-xe^{xy}}$$
    Since, the tangent is parallel to y-axis,
    $$\displaystyle\frac{dy}{dx}=\frac{1}{0}$$
    $$\Rightarrow xe^{xy}=1$$
    Also, $$y=0$$ on the line parallel to y-axis
    $$\Rightarrow x=1$$
    Hence, the required point is (1,0)
  • Question 4
    1 / -0
    The pressure P and volume V of a gas are connected by the relation $$PV^{1/4}=constant$$. The percentage increase in the pressure corresponding to a deminition of $$\dfrac12 \%$$ in the volume is
    Solution
    $$PV^{1/4}=constant$$
    $$\displaystyle \Rightarrow P=\dfrac{k}{V^{{1}/{4}}}$$
    $$\displaystyle \Rightarrow \dfrac{dP}{dV}=-\dfrac{k}{4}V^{-{5}/{4}}$$
    Percentage error in V $$\displaystyle= -\dfrac{1}{2}\%$$
    $$\Rightarrow\displaystyle \dfrac{\Delta V}{V} =-\dfrac{1}{200}$$
    $$\Rightarrow\displaystyle {\Delta V}=-\dfrac{V}{200}$$
    Approximate change in $$P\displaystyle=dP=(\dfrac{dP}{dV}){\Delta V}$$
                                               $$\displaystyle  =\dfrac{1}{800} {kV^{-1/4}}=\dfrac{1}{8}\%$$ of P
    Percentage increase in  $$V \ \displaystyle =\dfrac{1}{8}\%$$
  • Question 5
    1 / -0
    If there is an error of 2% in measuring the length of a simple pendulum, then percentage error in its period is
    Solution
    Time period $$\displaystyle T=2\pi \sqrt {\frac{l}{g}}$$
    $$\displaystyle \frac { dT }{ dl } =\frac { \pi  }{ \sqrt { gl }  } $$
    Percentage error in measuring l = 2%
    $$\displaystyle \Rightarrow \frac { \Delta l }{ l } =\frac { 2 }{ 100 } $$
    $$\displaystyle \Rightarrow \Delta l =\frac { 2l }{ 100 } $$
    Approximate error in $$T \ \displaystyle= dT=   \frac { dT }{ dl } \Delta l $$
                                                  $$\displaystyle =\frac{T}{100}=1\% of T$$
    Percentage error in $$T \ =1 \%$$
  • Question 6
    1 / -0
    If there is an error of $$a \%$$ in measuring the edge of a cube, then the percentage error in its surface area is
    Solution
    Surface area of cube $$S=6x^{2}$$
    $$\Rightarrow log S = log 6 + 2log x $$
    On differentiating we get, 
    $$ \dfrac{\Delta S}{S} = 2 \dfrac{\Delta x}{x}$$
    $$ \dfrac{\Delta S}{S} = 2 a \%$$ 
  • Question 7
    1 / -0
    While measuring the side of an equilateral triangle an error of $$k \%$$ is marked, the percentage error in its area is
    Solution
    Area of equilateral triangle $$A=\dfrac { \sqrt { 3 }  }{ 4 } { x }^{ 2 }$$
    $$\displaystyle \dfrac{dA}{dx}=\dfrac { \sqrt { 3 }  }{ 2 }x$$
    Given, percentage error in measuring side $$=k\%$$
    $$\Rightarrow \displaystyle \dfrac { \Delta x }{ x } =\dfrac { k }{ 100 } $$
    $$\Rightarrow \displaystyle  { \Delta x }=\dfrac {k x }{ 100 } $$
    Now, approximate error in measuring A$$\displaystyle =dA= (\dfrac{dA}{dx}){ \Delta x}$$
                                              $$\displaystyle = \dfrac{k }{100} \dfrac{\sqrt{3}}{2}x^{2} =2k\%$$ of A
    Percentage error in measuring $$A =2k\%$$
  • Question 8
    1 / -0
    If $$y=x^n$$, then the ratio of relative errors in $$y$$ and $$x$$ is
    Solution
    $$y=x^{n}$$
    $$\Rightarrow \displaystyle \dfrac{dy}{dx}=nx^{n-1}$$
    Approximate error in y is $$\displaystyle dy=\left (\dfrac{dy}{dx}\right) \Delta x$$
                                          $$=nx^{n-1} \Delta x$$
    Relative error in y is $$\displaystyle \dfrac{dy}{y}=\dfrac{n}{x}\Delta x$$
    Approximate error in x is $$\displaystyle dx=\left (\dfrac{dx}{dy}\right) \Delta y$$
                                         $$\displaystyle=\dfrac{1}{nx^{n-1}} \Delta y$$
    Relative error in x is $$\displaystyle \dfrac{dx}{x}=\dfrac{1}{nx^{n}}\Delta y$$
    Required ratio $$\displaystyle = \dfrac{\dfrac{n}{x}\Delta x}{\dfrac{1}{nx^{n}}\Delta y}$$
                                   $$\displaystyle =n^{2}x^{n-1} \dfrac{\Delta x}{\Delta y}$$
                                   $$\displaystyle =\dfrac{n}{1}$$
    So, the ratio of relative errors in y and x is $$ n:1$$.
  • Question 9
    1 / -0
    The circumference of a circle is measured as $$28 cm$$ with an error of $$0.01 cm$$. The percentage error in the area is
    Solution
    Circumference $$C=2\pi r$$
    $$\Rightarrow\displaystyle r=\frac{14}{\pi}$$
    Also, $$\displaystyle \frac{dC}{dr}=2\pi$$
    Area of circle $$A=\pi r^{2} $$
    $$\Rightarrow\displaystyle A=\frac{{14}^{2}}{\pi}$$
    Also, $$\displaystyle \frac{dA}{dr}=2\pi r$$
    $$\displaystyle \Rightarrow \frac{dA}{dC}=r=\frac{14}{pi}$$
    Approximate error in $$A$$ is $$\displaystyle dA=( \frac{dA}{dC}) \Delta C$$
                               $$\displaystyle=\frac{14}{\pi}\frac{1}{100}$$
                                $$\displaystyle=\frac{1}{1400}$$ of A
    Percentage error in $$A \ \displaystyle =\frac{1}{14}\%$$
  • Question 10
    1 / -0
    The height of a cylinder is equal to the radius. If an error of $$\alpha$$ % is made in the height, then percentage error in its volume is
    Solution
    Volume of cylinder $$V= \pi { r }^{ 2 }h$$
    Since, $$h=r$$
    $$V=\pi {h}^{3}$$ 
    $$\displaystyle \dfrac{dV}{dh}=3\pi h^{2}$$
    Given, percentage error in measuring height $$=\alpha$$%
    $$\Rightarrow \displaystyle \dfrac { \Delta h }{ h } =\dfrac { \alpha }{ 100 } $$
    $$\Rightarrow \displaystyle  { \Delta h }=\dfrac {\alpha h }{ 100 } $$
    Now, approximate error in measuring V$$\displaystyle =dV= (\dfrac{dV}{dh}){ \Delta h}$$
                                              $$\displaystyle = \dfrac{3\alpha }{100} {\pi h^{3}} =3\alpha$$% of V
    Percentage error in measuring $$V =3\alpha$$%
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now