Self Studies

Application of Derivatives Test - 23

Result Self Studies

Application of Derivatives Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If an error of $$k\%$$ is made in measuring the radius of a sphere, then percentage error in its volume is
    Solution
    Volume of sphere $$V=\dfrac { 4 }{ 3 } \pi { r }^{ 3 }$$
    $$\displaystyle \dfrac{dV}{dr}=4\pi r^{2}$$

    Given, percentage error in measuring radius =k%
    $$\Rightarrow \displaystyle \dfrac { \Delta r }{ r } =\dfrac { k }{ 100 } $$

    $$\Rightarrow \displaystyle  { \Delta r }=\dfrac { kr }{ 100 } $$

    Now, approximate error in measuring V$$\displaystyle =dV= (\dfrac{dV}{dr}){ \Delta r}$$

                                              $$\displaystyle = \dfrac{k}{100} {4\pi r^{3}} = \dfrac{3k}{100}V =3k\%$$ of V

    Percentage error in measuring $$V =3k\%$$
  • Question 2
    1 / -0
    If the ratio of base radius and height of a cone is 1:2 and percentage error in radius is $$\lambda$$ %, then the error in its volume is
    Solution
    Volume of cone $$V=\dfrac { 1 }{ 3 } \pi { r }^{ 2 }h $$
    Given, $$\displaystyle \dfrac{r}{h}=\dfrac{1}{2}$$
    $$\Rightarrow V=\dfrac { 2 }{ 3 } \pi { r }^{ 3 } $$
    $$\displaystyle \dfrac{dV}{dr}=2\pi r^{2}$$
    Percentage error in measuring r $$=\lambda$$%
    $$\Rightarrow \displaystyle \dfrac{\Delta r}{r}=\dfrac{\lambda}{100}$$
    $$\Rightarrow \displaystyle \Delta r =\dfrac{\lambda r}{100}$$
    Approximate error in V $$\displaystyle=dV=(\dfrac{dV}{dr}) \Delta r $$
                                          $$\displaystyle=\dfrac{\lambda}{100} (2\pi r^{3})=\lambda\%$$ of V
    Percentage error in $$V =\lambda\%$$
  • Question 3
    1 / -0
    If $$T=2\pi \sqrt {\dfrac {l}{g}}$$, then relative errors in T and l are in the ratio
    Solution
    $$\displaystyle T=2\pi \sqrt {\dfrac {l}{g}}$$
    $$\displaystyle \dfrac{dT}{dl}=\dfrac{\pi}{\sqrt{lg}}$$
    Approximate error in T $$=\displaystyle dT=(\dfrac{dT}{dl})\Delta l$$
                                            $$\displaystyle = \dfrac{\pi}{\sqrt{lg}}\Delta l$$
    Relative error in T $$\displaystyle =\dfrac{dT}{T}=\dfrac{1}{2l} \Delta l$$

    Approximate error in l $$=\displaystyle dl=(\dfrac{dl}{dT})\Delta T$$
                                            $$\displaystyle = \dfrac{\sqrt{lg}}{\pi}\Delta T$$
    Relative error in l i$$\displaystyle =\dfrac{dl}{l}=\dfrac{1}{\pi} \sqrt{\dfrac{g}{l}}\Delta T$$

    Required ratio $$\displaystyle =\dfrac{\dfrac{1}{2l} \Delta l}{\dfrac{1}{\pi} \sqrt{\dfrac{g}{l}}\Delta T}$$
                                   $$\displaystyle =\dfrac {\pi}{2\sqrt{lg}} \dfrac{\Delta l}{\Delta T}$$
                                    $$\displaystyle =\dfrac{1}{2}$$
  • Question 4
    1 / -0
    If the percentage error in the edge of a cube is 1, then error in its volume is
    Solution
    Volume of cube $$V=x^{3}$$
    $$\Rightarrow \displaystyle \dfrac{dV}{dx}=3x^{2}$$
    Percentage error in x is 1%.
    $$\Rightarrow \displaystyle \dfrac{\Delta x}{x}=\dfrac{1}{100}$$
    $$\Rightarrow \displaystyle \Delta x=\dfrac{x}{100}$$
    Approximate error in V $$\displaystyle=dV=(\dfrac{dV}{dx}) \Delta x$$
                                      $$\displaystyle = \dfrac{3{x}^{3}}{100}$$                              
    Percentage error in V $$\displaystyle= \dfrac{dV}{V} $$
                                       $$\displaystyle=\dfrac{3}{100}=3\%$$
  • Question 5
    1 / -0
    In a $$\Delta ABC$$ if sides a and b remain constant such that $$\alpha$$ is the error in C, then relative error in its area is
    Solution
    Area of triangle $$S\displaystyle =\dfrac {1}{2}ab \sin C$$
    $$\displaystyle \Rightarrow \dfrac {dS}{dC}=\dfrac {1}{2}ab \cos C$$
    Now, approximate error in S is $$\Delta S=\dfrac {dS}{dC}\Delta C$$
    $$\displaystyle\Rightarrow \Delta S=\dfrac {1}{2}ab \cos C \alpha              [\because \Delta C=\alpha]$$
    $$\displaystyle\Rightarrow \dfrac {\Delta S}{S}=\dfrac {\dfrac {1}{2}ab \cos C}{\dfrac {1}{2}ab \sin C}\alpha=\alpha \cot C$$
  • Question 6
    1 / -0
    The circumference of a circle is measured as $$56$$ cm with an error $$0.02$$ cm. The percentage error in its area is
    Solution
    Circumference of circle $$C=2\pi r=56cm$$

    $$\Rightarrow \displaystyle r=\frac{28}{\pi}$$

    Also, $$\displaystyle \frac{dC}{dr}=2\pi$$

    Area of circle $$A=\pi r^{2}$$

    $$\displaystyle \frac{dA}{dr}=2\pi r$$

    $$\Rightarrow\displaystyle \frac{dA}{dC}=r =\frac{28}{\pi}$$

    Approximate error in A $$=\displaystyle dA=(\frac{dA}{dC})\Delta C$$

                                          $$= r (0.02)$$

    $$\Rightarrow\displaystyle \frac{dA}{A}= \frac{0.02}{\pi r}=\frac{1}{1400}$$

    Percentage error in A is $$\displaystyle\frac{1}{14}$$%

  • Question 7
    1 / -0
    In a $$\Delta ABC$$ the sides b and c are given. If there is an error $$\Delta A$$ in measuring angle A, then the error $$\Delta a$$ in side a is given by
    Solution
    In $$\triangle ABC$$ we have
    $$\Rightarrow d\left( 2bc\cos { A }  \right) =d\left( { b }^{ 2 }+{ c }^{ 2 }-{ a }^{ 2 } \right) \\ \Rightarrow -2bc\sin { A } dA=-2ada\\ \Rightarrow bc\sin { A } dA=ada$$
    $$\displaystyle \Rightarrow \frac { 2 }{ a } \left( \frac { 1 }{ 2 } bc\sin { B }  \right) dA=da$$
    $$\displaystyle \Rightarrow da=\frac { 2S }{ a } dA$$
    $$\displaystyle \Rightarrow \triangle a=\frac { 2S }{ a } dA\\ \left[ \because dx\equiv \triangle a\quad and\quad dA=BA \right] $$
  • Question 8
    1 / -0
    If the percentage error in measuring the surface area of a sphere is $$\alpha$$ %, then the error in its volume is
    Solution
    Volume of sphere $$V=\dfrac{4}{3}\pi r^{3}$$
    $$\displaystyle \dfrac{dV}{dr}=4\pi r^{2}$$
    Surface area of sphere $$S=4\pi r^{2}$$
    $$\displaystyle \dfrac{dS}{dr}=8\pi r$$
    $$\displaystyle\Rightarrow \dfrac{dV}{dS}=\dfrac{r}{2}$$
    Also, given percentage error in measuring S is $$\alpha$$%

    $$\Rightarrow \displaystyle \dfrac{\Delta S}{S}=\dfrac{\alpha}{100}$$

    $$\Rightarrow \displaystyle \Delta S=\dfrac{\alpha S}{100}=\dfrac{4\pi r^{2}\alpha}{100}$$

    Approximate error in V is $$\displaystyle = dV= (\dfrac{dV}{dS}) \Delta S$$

                                             $$\displaystyle = \dfrac {\alpha}{100} (2\pi r^{3})$$

    Percentage error in V=$$\displaystyle \dfrac{dV}{V}$$

                                        $$\displaystyle=\dfrac{3}{2}\alpha$$%
  • Question 9
    1 / -0
    If an error of $$1^o$$ is made in measuring the angle of a sector of radius $$30 \ cm$$, then the approximate error in its area is
    Solution
    Area of sector $$\displaystyle A=\dfrac{\pi r^{2}\theta}{360}$$
    Given $$r=30 cm, d{\theta}=1^{0}$$
    Approximate error in A is $$\displaystyle=dA=(\dfrac{dA}{d\theta})\Delta \theta$$
                                 $$\displaystyle = \dfrac{900\pi}{360} $$
    $$\displaystyle \Rightarrow dA =2.5 \pi cm^{2}$$
  • Question 10
    1 / -0
    A line L is perpendicular to the curve $$\displaystyle  y = \dfrac {x^2}{4} - 2$$ at its point P and passes through (10, -1). The coordinates of the point P are
    Solution
    Let point $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ on curve $$ y=\cfrac { { x }^{ 2 } }{ 4 } -2$$
    Slope of tangent is $$\dfrac { dy }{ dx } =\dfrac { { x }_{ 1 } }{ 2 } $$
    So slope of perpendicular line is $$-\dfrac { 2 }{ { x }_{ 1 } } $$  ...(1)
    That perpendicular line also passes through $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ and $$\left( 10,-1 \right) $$
    Slope of line from these point is $$\dfrac { { y }_{ 1 }+1 }{ { x }_{ 1 }-10 } $$  ...(2)
    Equating (1) and (2) and solving we get,
    $${ x }_{ 1 }=4$$ and  $${ y }_{ 1 }=2$$
    Thus point is $$\left( 4,2 \right) $$
    Hence, option 'D' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now