Self Studies

Application of Derivatives Test - 24

Result Self Studies

Application of Derivatives Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If there is an error of $$0.01 cm$$ in the diameter of a sphere then percentage error in surface area when the radius $$= 5 cm$$, is
    Solution
    Surface area of sphere $$S=4\pi r^{2}$$
    $$\displaystyle S=\pi D^{2}$$
    $$\Rightarrow S=100\pi$$
    Also, $$ \displaystyle \frac{dS}{dD}=2\pi D=20\pi$$      [r=5]
    Approximate error in S is
    $$\displaystyle dS=(\frac{dS}{dD})\Delta D$$
    $$ =20\pi (0.01)$$

    then
    $$\dfrac{dS}{S}=\dfrac{1}{500} $$
    $$dS=0.2$$% of S
    Percentage error in $$S=0.2%$$
  • Question 2
    1 / -0
    If errors of $$1\%$$ each are made in the base radius and height of a cylinder, then the percentage error in its volume is
    Solution
    Given, percentage error in r is 1%
    $$\Rightarrow \displaystyle \frac{\Delta r}{r}=\frac{1}{100}$$

    $$\Rightarrow \displaystyle \Delta r=\frac{r}{100}$$
    Also given, percentage error in h is 1%
    $$\Rightarrow \displaystyle \frac{\Delta h}{h}=\frac{1}{100}$$

    $$\Rightarrow \displaystyle \Delta h=\frac{h}{100}$$

    Now, volume of cylinder $$V=\pi r^{2}h$$
    $$\dfrac{dV}{dr}=\pi2rh+\pi r^2\dfrac{dh}{dr} $$
    $$\Delta V=\pi [r^{2}\Delta h+2rh\Delta r]$$
    $$\displaystyle \Delta V=\pi[r^{2}\frac{h}{100}+2rh\frac{r}{100}]$$

    $$\displaystyle\Delta V=\pi r^{2}h[\frac{3}{100}]$$
    $$\Rightarrow\displaystyle\frac{\Delta V}{V}=\frac{3}{100}$$
    Percentage error in V is 3%
     
  • Question 3
    1 / -0
    If $$y = 4x - 5$$ is a tangent to the curve $$\displaystyle y^2 = px^3 + q$$ at $$(2, 3)$$, then
    Solution
    Given equation of curve
    $$\displaystyle y^2 = px^3 + q\\$$
    $$\displaystyle \dfrac{dy}{dx}=\dfrac{3px^{2}}{y}\\$$
    Slope of tangent at (2,3) $$= \displaystyle (\dfrac{dy}{dx})_{(2,3)}=2p$$

    Given equation of tangent is 
    $$y=4x-5$$
    Slope of tangent =4

    $$\Rightarrow 2p=4$$
    $$\Rightarrow p=2$$

    Since, (2,3) lies on 
    $$ y^{2} = px^{3} + q$$
    $$9=16+q$$
    $$\Rightarrow q=-7$$
  • Question 4
    1 / -0
    The point(s) at each of which the tangents to the curve $$\displaystyle y = x^3 - 3x^2 - 7x + 6$$ cut off on the positive semi axis $$OX$$ a line segment half that on the negative semi axis $$OY$$, then the co-ordinates of the point(s) is/are give by:
    Solution
    $$y={ x }^{ 3 }-3{ x }^{ 2 }-7x+6\\ \dfrac { dy }{ dx } =3{ x }^{ 2 }-6x-7$$
    Let coordinate of X be $$\left( a,0 \right) $$ then coordinate of Y is $$\left( 0,-2a \right) $$
    Therefore slope of XY is $$\cfrac { 0+2a }{ a-0 } =2$$
    Equating slope $$3{ x }^{ 2 }-6x-7=2\\ 3{ x }^{ 2 }-6x-9=0$$
    Solving we get
    $$x=-1,y=9\quad \\ x=3,y=-15$$
    Hence, option 'B' is correct.
  • Question 5
    1 / -0
    If the tangent to the curve $$xy + ax + by = 0$$ at (1, 1) makes an angle $$\displaystyle \tan ^{-1}(2)$$ with x-axis, then $$\displaystyle a + 2b$$ is equal to
    Solution
    $$xy'+y+a+by'=0$$
    $$(x+b)y'+a+y=0$$
    $$y'=\dfrac{-(a+y)}{x+b}$$
    Now 
    $$y'_{1,1}=\dfrac{-(a+1)}{b+1}$$
    $$=2$$
    Or 
    $$2b+2=-a-1$$
    $$2b+a=-3$$
  • Question 6
    1 / -0
    If the tangent at each point of the curve $$\displaystyle y=\frac { 2 }{ 3 } { x }^{ 3 }-2a{ x }^{ 2 }+2x+5$$ makes an acute angle with the positive direction of x-axis, then 
    Solution
    We have, $$\displaystyle  y=\dfrac { 2 }{ 3 } { x }^{ 3 }-2a{ x }^{ 2 }+2x+5$$ 
    $$\displaystyle \Rightarrow \dfrac { dy }{ dx } =2{ x }^{ 2 }-4ax+2.$$
    Since, the tangent makes an acute angle with the positive direction of x-axis, therefore, 
    $$\displaystyle \dfrac { dy }{ dx } \ge 0\Rightarrow 2{ x }^{ 2 }-4ax+2\ge 0$$ for all $$x$$
    $$\Rightarrow 16{ a }^{ 2 }-16\le 0$$
    $$(\because $$ Disc. $$={ \left( 4a \right)  }^{ 2 }-4\left( 2 \right) \left( 2 \right) \le 0)$$
    $$\Rightarrow { a }^{ 2 }-1\le 0$$ i.e., $$\left( a-1 \right) \left( a+1 \right) \le 0$$
    $$\Rightarrow -1\le a\le 1.$$ 
  • Question 7
    1 / -0
    The set of values of $$a$$ for which the function $$\displaystyle f(x) = (4a - 3) (x + \ln5) + 2(a - 7) \cot \frac {x}{2} \sin^2 \frac {x}{2}$$ does not posses critical points in its domain is
    Solution
    $$f\left( x \right) =\left( 4a-3 \right) \left( x+\log  5 \right) +2\left( a-7 \right) \cot  \left( \dfrac x2 \right) \sin ^{ 2 } \left( \dfrac x2 \right) $$
    $$\Rightarrow f\left( x \right) =\left( 4a-3 \right) \left( x+\log  5 \right) +\left( a-7 \right) \sin { x } $$
    $$f(x)$$ posses critical points when $$f'\left( x \right) =\left( 4a-3 \right) +\left( a-7 \right) \cos { x } =0$$
    $$\Rightarrow \cos { x } =-\dfrac { 4a-3 }{ a-7 } $$
    $$\Rightarrow -1\le -\dfrac { 4a-3 }{ a-7 } \le 1$$
    $$\Rightarrow -\dfrac { 4 }{ 3 } \le a\le 2$$
    Therefore, $$f(x)$$ does not posses critical points when $$a\in (-\infty,-\dfrac 43)\cup (2,\infty)$$

    Ans: A
  • Question 8
    1 / -0
    Let $$f\left( x \right) =\left\{ \begin{matrix} { x }^{ { 3 }/{ 5 } }\quad \quad \quad  x\le 1 \\ -{ \left( x-2 \right)  }^{ 3 }\quad x>1 \end{matrix} \right. $$
    then the number of critical points on the graph of the function is

    Solution
    $$f\left( x \right) =\left\{ \begin{matrix} { x }^{ { 3 }/{ 5 } }\quad \quad \quad x\le 1 \\ -{\left( x-2 \right)  }^{ 3 }\quad x>1 \end{matrix} \right. $$
    Critical points will at 
     At $$x=2$$, as$${ f }^{ ' }(x)=0$$ 
    At $$x=0$$, $${ f }^{ ' }(x)$$ is not defined
    At $$x=1$$, $${ f }^{ ' }(x)$$ does not exist , therefore its a critical point.
    Thus, there are three critical points.
    Hence, option 'C' is correct.
  • Question 9
    1 / -0
    Let $$f$$ be a decreasing function in $$(a,b]$$, then which of the following must be true?
    Solution
    $$f$$ is a decreasing function in $$(a,b]$$
    So $$f'(x) \le 0 $$ not strictly decreasing.
    Hence $$f(b) \le f(x)$$ in $$(a,b]$$
    Regarding continuity, only LHS known at b, no information about RHS.
  • Question 10
    1 / -0
    $$\displaystyle f:(0, \infty) \rightarrow (-\frac {\pi}{2}, \frac {\pi}{2})$$ be defined as, $$\displaystyle f(x) = arc \: \tan( \: x)$$
    The above function can be classified as
    Solution
    $$f(x) = \tan^{-1}x$$
    $$f'(x) = \cfrac{1}{1+x^2} > 0 \forall x \in R$$
    Thus $$f(x)$$ is injective.
    Also $$f(x)$$ is surjective as co-domain and range are same.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now