Self Studies

Application of Derivatives Test - 26

Result Self Studies

Application of Derivatives Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$P(2, 2)$$ and $$Q\left ( \displaystyle \frac{1}{2}, -1 \right )$$ are two points on the parabola $$y^{2}=2x$$. The coordinates of the point $$R$$ on the parabola, where tangent to the curve is parallel to the chord $$PQ$$ is
    Solution
    Let point $$\left( 2{ t }^{ 2 },2t \right) $$ lies on curve $${ y }^{ 2 }=2x$$ 
    Then slope is $$\displaystyle\dfrac { dy }{ dx } =\dfrac { 2 }{ 2y } =\dfrac { 1 }{ 2t } $$
    And this slope is equal to the the slope of line $$PQ =\displaystyle\dfrac { -1-2 }{ \dfrac { 1 }{ 2 } -2 } =2$$
    Equating slope we get $$\displaystyle t=\dfrac { 1 }{ 4 } $$
    Hence point is $$\displaystyle\left( \dfrac { 1 }{ 8 } ,\dfrac { 1 }{ 2 }  \right) $$
  • Question 2
    1 / -0
    The number of tangents to the curve $$y^{2}-2x^{3}-4y+8=0$$ that pass through $$(1, 0)$$ is
    Solution
    Point $$(0,1)$$ doesn't lie on curve, so let $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ is point of contact
    Therefore slope of $${ y }^{ 2 }-2{ x }^{ 3 }-4y+8=0$$ is
    $$\cfrac { dy }{ dx } =\cfrac { 6{ x }^{ 2 } }{ 2y-4 } =\cfrac { 6{ x }_{ 1 }^{ 2 } }{ 2{ y }_{ 1 }-2 } $$
    And slope of line trough $$\left( 1,0 \right) $$ and $$\left( { x }_{ 1 },{ y }_{ 1 } \right) $$ is $$\\ \cfrac { 0-{ y }_{ 1 } }{ 1-{ x }_{ 1 } } $$
    Equating slopes we get $$6{ x }_{ 1 }^{ 2 }-6{ x }_{ 1 }^{ 3 }=-2{ y }_{ 1 }^{ 2 }-4{ y }_{ 1 }$$
    And on solving it with equation of curve we get a quadratic equation. That give two values of slope of tangent.
    Hence 2 tangents is possible.
  • Question 3
    1 / -0
    The curve $$\displaystyle \frac{x^{n}}{a^{n}}+\frac{y^{n}}{b^{n}}=2$$ touches the line $$\displaystyle \frac{x}{a}+\frac{y}{b}=2$$ at the point
    Solution
    Slope of curve$$\cfrac { { x }^{ n } }{ { a }^{ n } } +\cfrac { { y }^{ n } }{ { b }^{ n } } =2$$ is 
    $$\cfrac { dy }{ dx } =-\cfrac { { b }^{ n } }{ { a }^{ n } } \cfrac { { x }^{ n-1 } }{ { y }^{ n-1 } } $$
    Slope of tangent $$\cfrac { { x } }{ { a } } +\cfrac { { y } }{ { b } } =2$$ is
    $$\cfrac { dy }{ dx } =-\cfrac { { b } }{ { a } } $$
    Equating both slopes, we get
    $$-\cfrac { { b }^{ n } }{ { a }^{ n } } \cfrac { { x }^{ n-1 } }{ { y }^{ n-1 } } =-\cfrac { { b } }{ { a } } $$
    Only $$x=a\quad y=b$$ satisfy the above equation.
    Hence, option 'B' is correct.

  • Question 4
    1 / -0
    If the line joining the points $$(0, 3)$$ and $$(5, -2)$$ is the tangent to the curve $$\displaystyle y=\frac{c}{x+1}$$ then the value of $$c$$ is
    Solution
    Slop of line joining the points $$(0,3)\quad and\quad (5,2)$$ is given by 
    $$\dfrac { 3+2 }{ 0-5 } =-1$$

    This is equal to the slop of tangent on the curve and that is given by 

    $$\dfrac { dy }{ dx } =\dfrac { -c }{ { \left( x+1 \right)  }^{ 2 } } \\ \dfrac { dy }{ dx } =-1\\ \Rightarrow c={ \left( x+1 \right)  }^{ 2 }...................(1)$$\

    Equation of line joining the points $$(0,3)\quad and\quad (5,2)$$ is given by

    $$(y-3)=-1(x-0)$$

    Solving equation of tangent and the curve for point of intersection

    $$\dfrac { c }{ x+1 } +x=3$$.............(2)

    Solving (1) and (2)

    $$x=1$$

    Putting this in (2), we get c=4
  • Question 5
    1 / -0
    If error in  measuring the edge of a cube is $$k$$% then the percentage error in estimating its volume is
    Solution
    Let the actual length of the cube be a.
    Therefore the measured length of the cube will be 
    $$=a(1\pm0.0k)$$
    $$=a(1\pm\dfrac{k}{100})$$
    Considering positive error, 
    $$a'=a(1+\dfrac{k}{100})$$
    $$V'=a^{3}(1+\dfrac{k}{100})^{3}$$

    $$=a^{3}(1+3(\dfrac{k}{100})+3(\dfrac{k}{100})^{2}+(\dfrac{k}{100})^{3})$$

    Since $$\dfrac{k}{100}<<1$$, hence we neglect the higher order terms.
    Thus 
    $$V'=a^{3}(1+3(\dfrac{k}{100}))$$

    Actual volume V
    $$V=a^{3}$$
    Therefore 
    $$V'-V=a^{3}(1+\dfrac{3k}{100})-a^{3}$$

    $$=a^{3}(\dfrac{3k}{100})$$

    $$\dfrac{V'-V}{V}=\dfrac{a^{3}\dfrac{3k}{100}}{a^{3}}$$

    $$=\dfrac{3k}{100}$$

    $$=\dfrac{3k}{100}$$

    $$\dfrac{V'-V}{V}\times 100=3k$$
    Therefore percentage error in volume is $$3k$$.
  • Question 6
    1 / -0
    The point on the curve $$\sqrt{x}+\sqrt{y}=2a^{2}$$, where the tangent is equally inclined to the axes, is
    Solution
    $$y=x$$ is the equation of line as it is equally inclined to axes
    So let point $$(k,k)$$ is the point of tangency 
    Therefore, $$\sqrt { k } +\sqrt { k } =2{ a }^{ 2 }\\ k={ a }^{ 4 }$$
    Hence point is $$\left( { a }^{ 4 },{ a }^{ 4 } \right) $$
  • Question 7
    1 / -0
    The angle between two tangents to the ellipse $$\displaystyle \frac{x^{2}}{16}+\frac{y^{2}}{9}=1$$ at the points where the line $$y=1$$ cuts the curve is
    Solution
    Substituting $$y=1$$ in $$\cfrac { { x }^{ 2 } }{ 16 } +\cfrac { { y }^{ 2 } }{ 9 } =1$$
    We get $$x=\pm \cfrac { 8\sqrt { 2 }  }{ 3 } $$
    And slope of tangents $$\cfrac { dy }{ dx } =\cfrac { 9x }{ 16y } =m_{1}, m_{2} =\pm \cfrac { 3\sqrt { 2 }  }{ 2 } $$
    Therefore $$tan\left( \theta  \right) =\dfrac{m_{1}-m_{2}}{1+m_{1}m_{2}}=\left| -\cfrac { 6\sqrt { 2 }  }{ 7 }  \right| \Rightarrow \theta ={ tan }^{ -1 }\left( \cfrac { 6\sqrt { 2 }  }{ 7 }  \right) $$
  • Question 8
    1 / -0
    Angle between the tangents to the curve $$y= x^{2}-5x+6$$ at the points $$(2,0)$$ and $$\left ( 3,0 \right )$$ is
    Solution
    Given equation of curve $$\displaystyle y=x^{2}-5x+6$$ 

    $$\displaystyle \Rightarrow \frac{dy}{dx}=2x-5$$

    Slope of tangent to the curve at $$(2,0)$$ is 

    $$\displaystyle \left(\frac{dy}{dx}\right)_{(2,0)}=2(2)-5=-1=m_{1}$$

    Slope of tangent to the curve at $$(3,0)$$ is 

    $$\displaystyle \left(\frac{dy}{dx}\right)_{(3,0)}=2(3)-5=1=m_{2}$$ 

    Since $$\displaystyle m_{1}m_{2}=-1$$

    $$\therefore $$ Angle between the tangents to the curve at $$(2,0)$$ and $$(3, 0)$$ is $$\displaystyle \dfrac{\pi}{2}$$
  • Question 9
    1 / -0
    The number of tangents to the curve $$\displaystyle y= e^{\left | x \right |}$$ at the point $$(0,1)$$ is
    Solution
    For $$x>0$$,
    $$y=e^{x}$$.
    $$\dfrac{dy}{dx}=e^{x}$$.
    Now 
    $$\dfrac{dy}{dx}_{x=0}=1$$.
    Hence
    $$y-1=1(x-0)$$
    Or 
    $$x-y+1=0$$ is the required equation of tangent.
    Similarly for $$x<0$$
    $$y=e^{-x}$$.
    $$\dfrac{dy}{dx}=-e^{-x}$$.
    Now 
    $$\dfrac{dy}{dx}_{x=0}=-1$$.
    Hence
    $$y-1=-1(x-0)$$
    Or 
    $$x+y-1=0$$ is the required equation of tangent.
    Hence at $$x=0$$ we will have 2 tangents to the curve $$y=e^{|x|}$$  which are mutually perpendicular.
  • Question 10
    1 / -0
    The curve $$y+e^{xy}+x= 0$$ has a tangent parellel to y-axis at a point
    Solution
    $$\dfrac{dy}{dx}+e^{xy}[x\dfrac{dy}{dx}+y]+1=0$$
    Or 
    $$\dfrac{dy}{dx}[1+x.e^{xy}]+1+y.e^{xy}=0$$
    Or 
    $$\dfrac{dy}{dx}=\dfrac{-(1+y.e^{xy})}{1+x.e^{xy}}$$
    Now 
    $$1+xe^{xy}=0$$ since the slope of the tangent is $$90^{0}$$.
    Hence
    $$xe^{xy}=-1$$
    Or 
    $$x(-x-y)=-1$$
    Or 
    $$x^{2}+xy=1$$
    Or 
    $$y=\dfrac{1-x^{2}}{x}$$
    Or 
    $$y=\dfrac{1}{x}-x$$ ...(i)
    Considering $$y=0$$,
    $$x^{2}=1$$
    $$x=\pm1$$.
    Hence we get 2 points $$(1,0)$$ and $$(-1,0)$$.
    Out of these 2, only $$(-1,0)$$ lies on the curve.
    Hence the required point is $$(-1,0)$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now