Self Studies

Application of Derivatives Test - 27

Result Self Studies

Application of Derivatives Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The tangent to the curve $$\displaystyle y=e^{x}$$ drawn at the point $$\displaystyle \left ( c, e^{c} \right )$$ intersects the line joining the points $$\displaystyle \left ( c-1, e^{c-1} \right )$$$$\displaystyle \left ( c+1, e^{c+1} \right )$$
    Solution
    Equation of straight line joining $$ A\left( c+1,{ e }^{ c+1 } \right) $$ and $$B\left( c-1,{ e }^{ c-1 } \right) $$ is 
    $$\displaystyle y-{ e }^{ c+1 }=\dfrac { { e }^{ c+1 }-{ e }^{ c-1 } }{ 2 } \left( x-c-1 \right)  $$  (1)
    Equation of tangent at $$ \left( c,{ e }^{ c } \right) $$ is $$ y-{ e }^{ c }={ e }^{ c }\left( x-c \right) $$   (2)
    Subtracting (1) from (2),we get 
    $$ \displaystyle { e }^{ c }\left( e-1 \right) ={ e }^{ c }\left[ \left( x-c \right) -\dfrac { 1 }{ 2 } \left( e-{ e }^{ -1 } \right) \left( x-c \right) +\dfrac { 1 }{ 2 } \left( e-{ e }^{ -1 } \right)  \right]  $$
    $$ \displaystyle \Rightarrow \dfrac { 1 }{ 2 } \left( e+{ e }^{ -1 } \right) -1=\left( x-c \right) \left[ 1-\dfrac { 1 }{ 2 } \left( e-{ e }^{ -1 } \right)  \right]  $$
    $$ \displaystyle \Rightarrow x-c=\dfrac { e+{ e }^{ -1 }-2 }{ 2-e+{ e }^{ -1 } } <0 $$
    [$$\because e+{ e }^{ -1 }>2$$ and $$2+{ e }^{ -1 }-e<0$$]
    $$\Rightarrow x<c $$
    Thus the two lines meet to the left of $$ x=c $$ 
  • Question 2
    1 / -0
    For $$a\in \left[ \pi ,2\pi  \right] $$ and $$n\in Z$$, the critical points of $$\displaystyle f\left( x \right)=\frac { 1 }{ 3 } \sin { a } \tan ^{ 3 }{ x } +\left( \sin { a } -1 \right) \tan { x } +\sqrt { \frac { a-2 }{ 8-a }  } $$ are 
    Solution
    Given, $$\displaystyle f\left( x \right)=\dfrac { 1 }{ 3 } \sin { a } \tan ^{ 3 }{ x } +\left( \sin { a } -1 \right) \tan { x } +\sqrt { \dfrac { a-2 }{ 8-a }  } $$
    $$f'\left( x \right) =\sin { a } \tan ^{ 2 }{ x } \sec ^{ 2 }{ x } +\left( \sin { a } -1 \right) \sec ^{ 2 }{ x } \\ =\left( \sin { a } \tan ^{ 2 }{ x } +\sin { a } -1 \right) \sec ^{ 2 }{ x } $$
    At critical points, we must have $$f'(x)=0$$
    $$\Rightarrow \sin { a } \tan ^{ 2 }{ x } +\sin { a } -1=0\left( \because \sec ^{ 2 }{ x } \neq 0\:for\:any\:x\in R \right) $$
    $$\displaystyle \Rightarrow \tan ^{ 2 }{ x } =\dfrac { 1-\sin { a }  }{ \sin { a }  } $$
    Since $$\displaystyle a\in \left[ \pi ,2\pi  \right] ,\dfrac { 1-\sin { a }  }{ \sin { a }  } <0$$
    $$\displaystyle \therefore \tan ^{ 2 }{ x } =\dfrac { 1-\sin { a }  }{ \sin { a }  } $$ has no solution in $$R$$
    $$\Rightarrow f(x)$$ has no critical points
  • Question 3
    1 / -0
    If the normal to the curve $$\displaystyle y= f\left ( x \right )$$ at the point $$\displaystyle \left ( 3, 4 \right )$$ makes an angle $$\displaystyle \frac{3\pi}{4}$$ with the positive x-axis then $$\displaystyle f'\left ( 3 \right )$$ is equal to
    Solution
    Slope of normal
    $$=\dfrac{-1}{f'(x)}$$
    $$=tan(\dfrac{3\pi}{4})$$
    $$=-1$$
    Hence
    $$f'(x)=1$$
    Or 
    $$\dfrac{dy}{dx}=1$$
    Or 
    $$y=x+c$$
    Hence
    $$y=f(x)$$ is an equation of a straight line parallel to $$y=x$$.
    Hence
    $$f'(x)$$ is independent of x and its value is 1.
  • Question 4
    1 / -0
    Find the points on the curve $$y=x^{3}$$, the tangents at which are inclined at an angle of $$60^{\circ}$$ to x-axis.
    Solution
    Hence slope of tangents
    $$=tan60^{0}$$
    $$=\sqrt{3}$$
    $$=\dfrac{dy}{dx}$$
    Hence
    $$\dfrac{dy}{dx}$$
    $$=3x^{2}$$
    $$=\sqrt{3}$$
    Or 
    $$x^{2}=\dfrac{1}{\sqrt{3}}$$
    Hence
    $$x=\pm\dfrac{1}{\sqrt{\sqrt{3}}}$$.
    Thus y
    $$=\dfrac{1}{\sqrt{3}}.\dfrac{1}{\sqrt{\sqrt{3}}}$$.
  • Question 5
    1 / -0
    Find the condition that the line $$\displaystyle Ax+By= 1$$ may be a normal to the curve $$\displaystyle a^{n-1}y=x^{n}.$$
    Solution
    Given, $$\displaystyle a^{n-1}y=x^{n}$$
    $$\displaystyle \therefore \dfrac{dy}{dx}=n\dfrac{x^{n-1}}{a^{n-1}}=n\dfrac{x^{n-1}}{a^{n-1}}\cdot \dfrac{1}{x}=n\dfrac{y}{x}.$$
    $$\displaystyle \therefore $$ Normal is: $$\displaystyle Y-y=-\dfrac{1}{dy/dx}\left ( X-x \right) =-\dfrac{x}{ny}\left ( X-x \right )$$
    $$\displaystyle \therefore Xx+Yny=ny^{2}+x^{2}.$$
    Compare with $$AX+BY=1$$
    $$\displaystyle \therefore \dfrac{X}{A}=\dfrac{ny}{B}= \dfrac{ny^{2}+x^{2}}{1}=k,$$ say.
    $$\displaystyle \therefore x= Ak, y=(Bk/n)$$ and $$\displaystyle ny^{2}+x^{2}=k$$ or $$\displaystyle  k^{2}\left [ \left ( B^{2}/n+A^{2} \right ) \right ]=k$$
    $$\displaystyle \therefore k=\dfrac{n}{B^{2}+nA^{2}}$$ ..(1)
    Now $$\displaystyle a^{n-1}y=x^{n}.$$ 
    Put for $$x$$ and $$y$$. 
    $$\displaystyle a^{n-1}y\cdot \dfrac{Bk}{n}= A^{n}k^{n}$$ $$\Rightarrow\displaystyle a^{n-1}B= nA^{n}k^{n-1}$$
    $$\Rightarrow\displaystyle a^{n-1}B=nA^{n}\cdot \left ( \dfrac{n}{B^{2}+nA^{2}} \right )^{n-1},$$ by (1)
    $$\Rightarrow\displaystyle a^{n-1}B\left ( B^{2}+nA^{2} \right )^{n-1}=A^{n}n^{n}.$$
    Above is the required condition.
  • Question 6
    1 / -0
    If the normal to the curve $$y=f(x)$$ at the point $$(3,4) $$ makes an angle $$3\pi /4 $$ with the positive x-axis, then $$f'(3)=$$
    Solution
    Tangent being perpendicular to given line of slope 2, will have its slope as -$$\displaystyle \dfrac{1}{2}$$.
    Slope of tangent=$$\displaystyle -\dfrac{fx}{fy}=-\dfrac{6x+1}{2(y+1)}=-\dfrac{1}{2}\therefore y=6x$$.
    Sloping with the given curve, we have $$\displaystyle 3x^{2}+36x^{2}+x+12x=0 $$
    or $$13x(3x+1)=0\therefore x=0, -1/3 \therefore y=0, -2$$
     Hence the two points are $$\displaystyle (0,0),\left ( -\dfrac{1}{3},-2 \right )$$ $$\displaystyle \therefore y=-\dfrac{1}{2}x$$ and $$y+2=-\dfrac{1}{2}\left ( x+\dfrac{1}{3} \right ) $$ or $$ 2y+x=0$$ and $$\displaystyle 2y+x+\dfrac{13}{3}=0$$

    Ans: D
  • Question 7
    1 / -0
    The set of all values of x for which the function $$\displaystyle f\left ( x \right )= \left ( k^{2}-3k+2 \right )\left ( \cos ^{2}\frac{x}{4}-\sin ^{2}\frac{x}{4} \right )+\left ( k-1 \right )x+\sin 1$$ does not posses critical points is 
    Solution
    $$\displaystyle f\left ( x \right )= \left ( k^{2}-3x+2 \right )\cos \frac{x}{2}+\left ( k-1 \right )x+\sin 1$$
    $$\displaystyle

    {f}'\left ( x \right )= \left ( k-1 \right )\left ( k-2 \right )\left (

    -\frac{1}{2}\sin \frac{x}{2} \right )+\left ( k-1 \right )$$
    $$=\displaystyle \left ( k-1 \right )\left [ 1-\frac{k-2}{2}\sin \frac{x}{2} \right ]$$
    Since f(x) does not possess critical points therefore f'(x) is not equal to zero.
    i.e.,

    $$\displaystyle k\neq 1$$ or $$\displaystyle 1-\frac{k-2}{2}\sin

    \frac{x}{2}= 0$$ does not posses a solution or $$\displaystyle \sin

    \frac{x}{2}= \frac{2}{k-2}$$ does not have a solution.
    Hence we must

    have $$\displaystyle \left | \frac{2}{k-2} \right |> 1$$ as

    $$\displaystyle \left | \sin \frac{x}{2} \right |< 1.$$
    Above implies that $$\displaystyle \left | k-2 \right |^{2}\leq 4$$
    or $$\displaystyle -2< \left ( k-2 \right )< 2$$
    $$\displaystyle \because x^{2}< a^{2}\Rightarrow \left ( x^{2}-a^{2} \right )= -ive$$ or $$\displaystyle -a< x< a$$
    $$\displaystyle \therefore 0 < k< 4$$. Also $$\displaystyle k\neq 1.$$
    $$\displaystyle \therefore k \epsilon \left ( 0,1 \right )\cup \left ( 1,4 \right )$$
  • Question 8
    1 / -0
    Find the co-ordinates of the points on the curve $$\displaystyle y= x/\left ( 1+x^{2} \right )$$ where the tangent to the curve has greatest slope.
    Solution
    Given curve 
    $$\displaystyle y= \dfrac{x}{\left ( 1+x^{2} \right )}$$ 
    Here slope
    $$\displaystyle S= \dfrac{dy}{dx}= \dfrac{\left \{ 1.\left ( 1+x^{2} \right )-2x.x \right \}}{\left ( 1+x^{2} \right )^{2}}$$
    $$\displaystyle \Rightarrow S =\dfrac{\left ( 1-x^{2} \right )}{\left ( 1+x^{2} \right )^2}$$

    Now, $$\displaystyle \dfrac{dS}{dx}=\dfrac{ \left \{ -2x\left ( 1+x^{2} \right )^{2}-2\left ( 1+x^{2} \right ).2x\left ( 1-x^{2} \right ) \right \}}{\left ( 1+x^{2} \right )^{4}}$$

    $$\displaystyle = \dfrac{-2x\left ( 1+x^{2} \right )\left ( 3-x^{2} \right )}{\left ( 1+x^{2} \right )^{4}}$$

    $$\displaystyle \dfrac{dS}{dx}= \dfrac{2x\left [ x-\left ( -\sqrt{3} \right ) \right ]\left [ x-\sqrt{3} \right ]}{\left ( 1+x^{2} \right )^{3}}.$$

    For maximum or minimum of S, $$\dfrac{dS}{dx}=0$$.
    $$\displaystyle \Rightarrow  x= -\sqrt{3}, 0, \sqrt{3}$$.
    Now, at $$x=0$$, $$\dfrac{ds}{dx}$$ changes from +ive to -ive
    At $$\displaystyle x= \pm \sqrt{3}$$. it changes from -ive to +ive .
    Hence slope S is maximum when x=0 and min. when $$\displaystyle x= \pm \sqrt{3}$$, thus for greatest slope, we have x=0 and y=0.
    Hence the required point is (0, 0), that is, the origin.
  • Question 9
    1 / -0
    Find $$\displaystyle \frac{dy}{dx}$$ if$$ \:y= \left [ x+\sqrt{x+} \sqrt{x}\right ]^{1/2}$$, at $$x=1$$
    Solution
    $$y=[x+\sqrt{x+\sqrt{x}}]^{\frac{1}{2}}$$

    $$y^{2}=x+\sqrt{x+\sqrt{x}}$$

    $$y^{2}-x=\sqrt{x+\sqrt{x}}$$

    $$y^{4}-2xy^{2}+x^{2}=x+\sqrt{x}$$

    Differentiating with respect to x gives us

    $$4y^{3}y'-2y^{2}-4xyy'+2x=1+\dfrac{1}{2\sqrt{x}}$$

    At $$x=1$$

    $$4y^{3}_{x=1}y'-2y^{2}_{x=1}-4yy'_{x=1}+2=1+\dfrac{1}{2}$$

    $$4y^{3}_{x=1}y'-2y^{2}_{x=1}-4yy'_{x=1}=\dfrac{-1}{2}$$

    Now at $$x=1$$
    $$y=\sqrt{1+\sqrt{1+\sqrt{1}}}$$

    $$=\sqrt{1+\sqrt{2}}$$

    Substituting in the above equation gives us

    $$4y^{3}_{x=1}y'-2y^{2}_{x=1}-4yy'_{x=1}=\dfrac{-1}{2}$$

    $$4(\sqrt{1+\sqrt{2}})(1+\sqrt{2})y'-2(1+\sqrt{2})-4(\sqrt{1+\sqrt{2}})y'=\dfrac{-1}{2}$$

    $$4(\sqrt{1+\sqrt{2}})y'(1+\sqrt{2}-1)=\dfrac{-1}{2}+2(1+\sqrt{2})$$

    $$4\sqrt{2}(\sqrt{1+\sqrt{2}})y'=\dfrac{3}{2}+2\sqrt{2}$$

    $$8\sqrt{2}(\sqrt{1+\sqrt{2}})y'=3+4\sqrt{2}$$

    $$y'=\dfrac{3+4\sqrt{2}}{8\sqrt{2}(\sqrt{1+\sqrt{2}})}$$
    Hence

    $$\dfrac{dy}{dx}_{x=1}=\dfrac{3+4\sqrt{2}}{8\sqrt{2}(\sqrt{1+\sqrt{2}})}$$
  • Question 10
    1 / -0
    A and B are points $$(-2,0)$$ and $$(1,3)$$ on the curve $$\displaystyle y=4-x^{2}$$. If the tangent at P on the curve be parallel to chord AB, then co-ordinates of point P are 
    Solution
    Given equation of curve $$\displaystyle y=4-x^{2}$$     ...(i)
    $$\dfrac{dy}{dx}=-2x$$

    Given points $$A(-2,0)$$ and $$(1,3)$$
    Slope of AB $$=\dfrac{3}{3}=1$$

    $$\Rightarrow -2x=1$$
    $$\Rightarrow x=\dfrac{-1}{2}$$

    So, by equation (i), we get
    $$y=\dfrac{15}{4}$$
    Hence, the point is $$(-\dfrac{1}{2},\dfrac{15}{4})$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now