Given curve
$$\displaystyle y= \dfrac{x}{\left ( 1+x^{2} \right )}$$
Here slope
$$\displaystyle S= \dfrac{dy}{dx}= \dfrac{\left \{ 1.\left ( 1+x^{2} \right )-2x.x \right \}}{\left ( 1+x^{2} \right )^{2}}$$
$$\displaystyle \Rightarrow S =\dfrac{\left ( 1-x^{2} \right )}{\left ( 1+x^{2} \right )^2}$$
Now, $$\displaystyle \dfrac{dS}{dx}=\dfrac{ \left \{ -2x\left ( 1+x^{2} \right )^{2}-2\left ( 1+x^{2} \right ).2x\left ( 1-x^{2} \right ) \right \}}{\left ( 1+x^{2} \right )^{4}}$$
$$\displaystyle = \dfrac{-2x\left ( 1+x^{2} \right )\left ( 3-x^{2} \right )}{\left ( 1+x^{2} \right )^{4}}$$
$$\displaystyle \dfrac{dS}{dx}= \dfrac{2x\left [ x-\left ( -\sqrt{3} \right ) \right ]\left [ x-\sqrt{3} \right ]}{\left ( 1+x^{2} \right )^{3}}.$$
For maximum or minimum of S, $$\dfrac{dS}{dx}=0$$.
$$\displaystyle \Rightarrow x= -\sqrt{3}, 0, \sqrt{3}$$.
Now, at $$x=0$$, $$\dfrac{ds}{dx}$$ changes from +ive to -ive
At $$\displaystyle x= \pm \sqrt{3}$$. it changes from -ive to +ive .
Hence slope S is maximum when x=0 and min. when $$\displaystyle x= \pm \sqrt{3}$$, thus for greatest slope, we have x=0 and y=0.
Hence the required point is (0, 0), that is, the origin.