Self Studies

Application of Derivatives Test - 28

Result Self Studies

Application of Derivatives Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The line $$y=x$$ is a tangent to the parabola $$\displaystyle y= ax^{2}+bx+c$$ at the point $$x=1$$.If the parabola passes through the point $$(-1,0)$$, then determine $$a, b, c.$$
    Solution
    Given equation of parabola is 
    $$\displaystyle y= ax^{2}+bx+c$$ 
    $$\displaystyle \frac{dy}{dx}= 2ax+b$$
    Slope of tangent to the curve at $$x=1$$ is $$2a+b$$
    Given tangent is $$y=x$$ . Slope of this tangent is $$1.$$
    So, $$2a+b=1$$    ...(1)

    Since, the parabola passes through $$(-1,0)$$ 
    $$\displaystyle \therefore a-b+c= = 0$$      ...(2) 

    Given $$y=x$$ is a tangent at $$x=1$$
     $$\displaystyle \therefore y= 1.$$ 
    Hence $$(1,1)$$ lies both on tangent and parabola 
    $$\displaystyle \therefore a+b+c= 1$$         ...(3)

    Solving (1), (2) and (3), we get
     $$\displaystyle a= \frac{1}{4}, b= \frac{1}{2}, c= \frac{1}{4}.$$
  • Question 2
    1 / -0
    Find the points on the curve $$y=x/(1-x^{2})$$ where the tangents makes an angle of $$\pi /4$$ with x-axis
    Solution
    $$\dfrac{dy}{dx}=tan45^{0}$$
    Or
    $$\dfrac{dy}{dx}=1$$
    Or 
    $$\dfrac{(1-x^{2})-x(-2x)}{(1-x^{2})^{2}}=1$$
    Or 
    $$1-x^{2}+2x^{2}=(1-x^{2})^{2}$$
    Or 
    $$1+x^{2}=1-2x^{2}+x^{4}$$
    Or 
    $$x^{4}-3x^{2}=0$$
    Or 
    $$x^{2}[x^{2}-3]=0$$
    $$x=0$$ or 
    $$x=\pm\sqrt{3}$$
    Hence
    $$y=\dfrac{\sqrt{3}}{1-3}=-\dfrac{\sqrt{3}}{2}$$

    $$y=\dfrac{-\sqrt{3}}{1-3}=\dfrac{\sqrt{3}}{2}$$

    Hence
    $$\left(\sqrt{3},-\dfrac{\sqrt{3}}{2}\right),\left(-\sqrt{3},\dfrac{\sqrt{3}}{2}\right)$$.
  • Question 3
    1 / -0
    The line $$\dfrac xa+\dfrac yb=1$$ touches the curve $$\displaystyle y=be^{-x/a}$$ at the point
    Solution
    Simplifying the equation of the line we get 
    $$bx+ay=ab$$
    $$ay=-bx+ab$$
    Or 
    $$y=\dfrac{-b}{a}.x+b$$
    Hence
    $$\dfrac{dy}{dx}=\dfrac{-b}{a}$$
    Or 
    $$-\dfrac{b}{a}.e^{-x/a}.=\dfrac{-b}{a}$$
    Or 
    $$e^{-x/a}=1$$
    Or 
    $$x=0$$
    Hence
    $$y=b$$.
    Therefore the point is $$(0,b)$$
  • Question 4
    1 / -0
    The curve $$\displaystyle y-e^{xy}+x=0$$ has a vertical tangent at the point 
    Solution
    $$\dfrac{dy}{dx}-e^{xy}[x\dfrac{dy}{dx}+y]+1=0$$
    Or 
    $$\dfrac{dy}{dx}[1-x.e^{xy}]+1-y.e^{xy}=0$$
    Or 
    $$\dfrac{dy}{dx}=\dfrac{-(1-y.e^{xy})}{1-x.e^{xy}}$$
    Now 
    $$1-xe^{xy}=0$$ since the slope of the tangent is $$90^{0}$$.
    Hence
    $$xe^{xy}=1$$
    Or 
    $$x(x+y)=1$$
    Or 
    $$x^{2}+xy=1$$
    Or 
    $$y=\dfrac{1-x^{2}}{x}$$
    Or 
    $$y=\dfrac{1}{x}-x$$ ...(i)
    Considering $$y=0$$,
    $$x^{2}=1$$
    $$x=\pm1$$.
    Hence we get 2 points $$(1,0)$$ and $$(-1,0)$$.
    Out of these 2, only $$(1,0)$$ lies on the curve.
    Hence the required point is $$(1,0)$$.
  • Question 5
    1 / -0
    If $$\displaystyle x\cos \alpha +y\sin \alpha =p$$ touches $$\displaystyle x^{2}+a^{2}y^{2}=a^{2},$$ then
    Solution
    Solving for y, we have 
    $$\displaystyle y=\dfrac { p }{ \sin { \alpha  }  } -x\cot { \alpha  } $$
    Putting this value in $${ x }^{ 2 }+{ a }^{ 2 }{ y }^{ 2 }={ a }^{ 2 }$$, we have
    $$\displaystyle { x }^{ 2 }+{ a }^{ 2 }{ \left( \dfrac { p }{ \sin { \alpha  }  } -x\cot { \alpha  }  \right)  }^{ 2 }={ a }^{ 2 }$$

    $$\displaystyle \Rightarrow { x }^{ 2 }\left( 1+{ a }^{ 2 }\cot ^{ 2 }{ \alpha  }  \right) -\dfrac { 2a^{ 2 }xp\cot { \alpha  }  }{ \sin { \alpha  }  } +\dfrac { { a }^{ 2 }{ p }^{ 2 } }{ \sin ^{ 2 }{ \alpha  }  } -{ a }^{ 2 }=0$$

    The discriminant of this equation must be zero. So
    $$\displaystyle { a }^{ 4 }\dfrac { { p }^{ 2 }\cot ^{ 2 }{ \alpha  }  }{ \sin ^{ 2 }{ \alpha  }  } =\left( 1+{ a }^{ 2 }\cot ^{ 2 }{ \alpha  }  \right) \left( \dfrac { { a }^{ 2 }{ p }^{ 2 } }{ \sin ^{ 2 }{ \alpha  }  } -{ a }^{ 2 } \right) \\ \Rightarrow { a }^{ 2 }{ p }^{ 2 }\cot ^{ 2 }{ \alpha  } =\left( 1+{ a }^{ 2 }\cot ^{ 2 }{ \alpha  }  \right) \left( { p }^{ 2 }-\sin ^{ 2 }{ \alpha  }  \right) \\ \Rightarrow { p }^{ 2 }\left( { a }^{ 2 }\cot ^{ 2 }{ \alpha  } -1-{ a }^{ 2 }\cot ^{ 2 }{ \alpha  }  \right) =\sin ^{ 2 }{ \alpha  } -{ a }^{ 2 }\cos ^{ 2 }{ \alpha  } \\ \Rightarrow { p }^{ 2 }={ a }^{ 2 }\cos ^{ 2 }{ \alpha  } +\sin ^{ 2 }{ \alpha  } $$
  • Question 6
    1 / -0
    The critical points of the function $$\displaystyle f\left ( x\right )=\left ( x-2 \right )^{2/3}\left ( 2x+1\right )$$ are
    Solution
    Given, $$f(x)=(x-2)^{2/3}(3x+1)$$
    $$\displaystyle f'\left( x \right) =\dfrac { 2 }{ 3 } { \left( x-2 \right)  }^{ \frac { -1 }{ 3 }  }\left( 2x+1 \right) +2{ \left( x-2 \right)  }^{ \frac { 2 }{ 3 }  }=10\left( x-1 \right) { \left( x-2 \right)  }^{ \frac { -1 }{ 3 }  }$$
    $$f'\left( x \right) =0$$
    $$\Rightarrow x=1$$
    Also $$f'\left( x \right) $$ does not exits at $$x=2$$ 
    Hence the critical points are $$x=1,2$$
  • Question 7
    1 / -0
    If $$\displaystyle f\left ( 0 \right )=0$$ and $$\displaystyle f''\left ( x \right )>0$$ for all $$x > 0$$, then $$\displaystyle \frac{f(x)}{x}$$
    Solution
    Given, $$f\left( 0 \right) =0$$
    $$f''(x)>0$$, it means $$f'(x)$$ is also increasing
    Let $$g(x)=\cfrac { f\left( x \right)  }{ x } $$
    $$g'\left( x \right) =\cfrac { xf'\left( x \right) -f\left( x \right)  }{ { x }^{ 2 } } $$
    $$f'\left( x \right) $$ is increasing and $$x\epsilon \left( 0,\infty  \right) $$ thus
    $$f'\left( x \right) =$$positive
    $$f(x)=$$positive
    $${ x }^{ 2 }=$$positive
    Therefore, $$g\left( x \right) =$$positive $$>0$$
    Thus, $$\cfrac { f\left( x \right)  }{ x } $$ increases for $$x\epsilon \left( 0,\infty  \right) $$
  • Question 8
    1 / -0
    The number of critical points of the fuction $$\displaystyle f'\left ( x \right ),$$ where $$\displaystyle f'\left ( x \right )= \frac{\left | x-2 \right |}{x^{3}}$$ are
    Solution
    $$\displaystyle f\left( x \right) =\begin{cases} \dfrac { x-2 }{ { x }^{ 3 } } ,\quad \quad x>1 \\ \dfrac { 2-x }{ { x }^{ 3 } } ,\quad \quad x<1,x\neq 0 \end{cases}$$

    $$\displaystyle f'\left( x \right) =\begin{cases} \dfrac { 2\left( 3-x \right)  }{ { x }^{ 4 } } ,\quad x\in \left( -\infty ,0 \right) \cup \left( 0,1 \right)  \\ \dfrac { 2\left( x-3 \right)  }{ { x }^{ 4 } } ,\quad \quad x\in \left( 1,\infty  \right)  \end{cases}$$

    $$\displaystyle f''\left( x \right) =\begin{cases} \dfrac { 6\left( x-4 \right)  }{ { x }^{ 5 } } ,\quad x\in \left( -\infty ,0 \right) \cup \left( 0,1 \right)  \\ \dfrac { 6\left( 4-x \right)  }{ { x }^{ 5 } } ,\quad \quad x\in \left( 1,3 \right) \cup \left( 3,\infty  \right)  \end{cases}$$

    $$f''\left( x \right) $$ doesn't exits at $$x=3$$ 
    Thus critical point of $$f'\left( x \right) $$ is 3.
  • Question 9
    1 / -0
    The angle at which the curve $$y=ke^{kx}$$ intersects the $$y$$ -axis is
    Solution
    $$\displaystyle \dfrac{dy}{dx}=k^{2}e^{kx}$$. 

    The curve intersects $$y$$-axis at $$\left ( 0,k \right )$$ 

    So, $$\displaystyle \dfrac{dy}{dx}|_{\left ( 0,k \right )}=k^{2}$$.

    If $$\theta $$ is the angle at which the given
    curve intersects the $$y$$-axis then $$\displaystyle \tan \left ( \pi /2-\theta  \right )=\dfrac{k^{2}-0}{1+0.k^{2}}=k^{2}$$. 

    Hence $$\theta =\cot ^{-1}k^{2}$$
  • Question 10
    1 / -0
    Let $$\displaystyle f\left ( x \right )=x^{3}+ax+b$$ with $$\displaystyle a\neq b$$ and suppose the tangent lines to the graph of $$f$$ at $$x = a$$ and $$x = b$$ have the same gradient Then the value of $$f (1)$$ is equal to
    Solution
    $$f(x)=x^3+ax+b$$
    $$f'(x)=3x^2+a$$
    Given  gradient at $$x=a$$ and at $$x=b$$ are same
    $$\Rightarrow 3a^2 +a=3b^2+a\Rightarrow b^2=a^2$$
    But given $$a\neq b$$
    $$\Rightarrow a+b=0 ..(1)$$
    Hence $$ f(1)=1+a+b=1$$ using (1)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now