Self Studies

Application of Derivatives Test - 30

Result Self Studies

Application of Derivatives Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the radius of a sphere is measured as $$9 \ cm$$ with an error of $$ 0.03 \ cm$$ then, find the approximate error in calculating its volume.
    Solution
    Given, $$r=9 cm, \Delta r=0.03cm$$
    We know Volume of sphere with radius 'r' is $$V=\cfrac{4}{3}\pi r^3$$
    $$\therefore \Delta V=4\pi r^2\Delta r$$
    $$\Rightarrow \Delta V=4\pi\times 81\times .03=9.72\pi  cm^3 $$(using given values)
  • Question 2
    1 / -0
    The curve $$\displaystyle y=ax^{3}+bx^{2}+cx+5$$ touches the $$x$$ - axis at $$P(-2, 0)$$ and cuts the $$y$$-axis at a point $$Q$$, where its gradient is $$3$$. Find $$a, b, c$$.
    Solution
    Given, $$y= ax^3+bx^2+cx+5$$

    $$\therefore \displaystyle \frac{dy}{dx}= 3ax^{2}+2bx+c$$

    Since the curve touches $$x$$-axis at $$\left ( -2,0 \right )$$ so

    $$\displaystyle \frac{dy}{dx}|_{\left ( -2,0 \right )}= 0\Rightarrow 12a-4b+c= 0$$   ....  $$\left ( i \right )$$

    The curve cut the $$y$$-axis at $$\left ( 0,8 \right )$$, so

    $$\displaystyle \frac{dy}{dx}|_{\left ( 0,8 \right )}= 3\Rightarrow c= 3$$

    Also the curve passes through $$\left ( -2,0 \right )$$, so

    $$0= -8a+4b-2c+8\Rightarrow -8a+4b-2= 0$$   ..... $$ \left ( ii \right )$$

    Solving $$ \left ( i \right )$$ and $$ \left ( ii \right )$$ $$a = -\dfrac {1}{4}$$, $$b =0$$
  • Question 3
    1 / -0
    The slope of the normal to the curve $$\displaystyle x=a\left ( \theta -\sin \theta  \right ),\: \: y=a\left ( 1-\cos \theta  \right )$$ at point $$\displaystyle \theta =\dfrac{\pi }2$$ is
    Solution
    The slope of normal $$\displaystyle x=a\left ( \theta -\sin \theta

     \right );\: \: \: \: y=a\left ( 1-\cos \theta  \right )\: \: \: at\: \:

    \: \theta =\dfrac{\pi }{2}$$
    $$\displaystyle \left ( \dfrac{dx}{d\theta } \right )_{\theta =\dfrac{\pi }{2}}=a\left ( 1-\cos \theta  \right )=a $$
    $$\displaystyle \left ( \dfrac{dy}{d\theta } \right )_{\theta =\dfrac{\pi }{2}}=a\sin \theta =a $$
    $$\therefore \left ( \dfrac{dy}{dx} \right )=1$$
    Therefore, slope of normal at the given point is, $$m= \left ( -\dfrac{dx}{dy} \right )=-1$$
    Hence, option 'C' is correct.
  • Question 4
    1 / -0
    Let h be a twice continuously differentiable positive function on an open interval $$J$$. Let $$\displaystyle g\left ( x \right )=ln\left ( h(x) \right ) $$ for each $$\displaystyle x\epsilon J $$
    Suppose $$\displaystyle \left ( h'\left (  x \right )\right )^{2}> h''\left ( x \right )h\left ( x \right )$$ for each $$\displaystyle x\epsilon J$$ Then
    Solution
    Given, $$\displaystyle g(x)=\ln(h(x))$$
    $$\Rightarrow g'(x)=\cfrac{h'(x)}{h(x)}$$
    $$\Rightarrow g''(x)=\cfrac{h(x).h''(x)-(h'(x))^2}{(h(x))^2}$$
    Using given condition, Clearly $$g''(x)< 0, x  \epsilon J$$
    Hence $$g(x)$$ is concave down on $$J.$$
  • Question 5
    1 / -0
    Let $$f$$ be a continuous, differentiable and bijective function. If the tangent to $$y=f\left( x \right) $$ at $$x=b$$, then there exists at least one $$c\in \left( a,b \right) $$ such that 
    Solution
    Since the same line is tangent at one point $$x=a$$ and normal at other point $$x=b$$
    $$\Rightarrow$$ Tangent at $$x=b$$ will be perpendicular to tangent at $$x=a$$
    $$\Rightarrow$$ Slope of tangent changes from positive to negative or negative to positive. Therefore, it takes the value zero somewhere. Thus, there exists a point $$c\in \left( a,b \right) $$ where $$f'\left( c \right) =0$$.
  • Question 6
    1 / -0
    The slope of normal to the curve $$\displaystyle y^{2}=4ax$$ at a point $$\displaystyle \left ( at^{2},2at \right )$$ is
    Solution
    $$y^2=4ax$$
    $$\Rightarrow 2y\cfrac{dy}{dx}=4a\Rightarrow \cfrac{dy}{dx}=\cfrac{2a}{y}$$
    Therefore, slope of normal to the given curve is, $$=\left(-\cfrac{dx}{dy}\right)_{(at^2,2at)}=-\cfrac{2at}{2a}=-t$$
    Hence, option 'C' is correct.
  • Question 7
    1 / -0
    The slope of the tangent to the curve $$xy + ax - by = 0$$ at the point $$(1, 1)$$ is $$2$$ then values of $$a$$ and $$b$$ are respectively -
    Solution
    Given  curve is $$xy + ax - by = 0$$
    Slope of tangent at $$(1, 1)$$ is $$\displaystyle x.\frac{dy}{dx}+y+a-b.\frac{dy}{dx}=0 $$
    $$\displaystyle

    \left ( \frac{dy}{dx} \right )_{\left ( 1,1 \right )}=-\left [

    \frac{\left ( a+y \right )}{x-b} \right ]_{\left ( 1,1 \right

    )}=-\frac{\left ( a+1 \right )}{1-b} $$
    $$\displaystyle \therefore -\frac{\left ( a+1 \right )}{1-b}=2 $$
    So, $$2b - a = 3  $$                                        ..........(1)
    $$\displaystyle \because (1, 1)$$ lies on curve $$xy + ax - by = 0$$
    $$\displaystyle \therefore a-b=-1 $$         .........(2)
    From (1) and (2), we get
    $$a = 1, b = 2$$
    Hence, option 'A' is correct.
  • Question 8
    1 / -0
    At what point the tangent line to the curve $$\displaystyle y=\cos \left ( x+y \right ),\left ( -2\pi \leq x\leq 2\pi  \right )$$ is parallel to $$x + 2y = 0$$
    Solution
    $$\displaystyle y=\cos \left ( x+y \right )$$           $$\displaystyle \left ( -2\pi \leq x\leq 2\pi  \right )$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=-\sin \left ( x+y \right )\left ( 1+\frac{dy}{dx} \right )$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}\left ( 1+\sin \left ( x+y \right ) \right )=-\sin \left ( x+y \right )$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=-\frac{\sin \left ( x+y \right )}{1+\sin \left ( x+y \right )}$$
    Given tangent is parallel to the line, $$x + 2y = 0$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=-\frac{\sin \left ( x+y \right )}{1+\sin \left ( x+y \right )}=-\frac{1}{2}$$
    $$\displaystyle 2\sin \left ( x+y \right )=1+\sin \left ( x+y \right )$$
    $$\displaystyle \sin \left ( x+y \right )=1\Rightarrow \cos(x+y)=0\Rightarrow x+y=\cfrac{\pi}{2}$$
    Also the point lies on the given curve,
     $$y=0\Rightarrow x= \dfrac{\pi }{2}$$
    Thus the point is, $$\displaystyle \left ( \frac{\pi }{2},0 \right )$$
    Hence, option 'A' is correct.
  • Question 9
    1 / -0
    The point at which the tangent to the curve $$\displaystyle y=x^{3}+5$$ is perpendicular to the line $$x + 3y = 2$$ are
    Solution
    Let point be $$\displaystyle \left ( x_{1},y_{1} \right )$$
    $$y = \displaystyle x^{3}+5$$
    $$\Rightarrow \displaystyle \dfrac{dy}{dx}=3x^{2}$$
    Now, the slope of tangent at this point is $$=\displaystyle \left ( \frac{dy}{dx} \right )_{x_{1}y_{1}}=3x_{1}^{2}$$
    It is $$\displaystyle \perp $$ to $$x + 3y - 2 = 0$$
    So $$\displaystyle 3x_{1}^{2}\times -\frac{1}{3}=-1\Rightarrow x_1=\pm 1 $$
    Thus,
    at $$\displaystyle x_{1}=1$$,             $$\Rightarrow$$                $$\displaystyle y_{1}=6$$
    and at $$\displaystyle x_{1}=-1$$      $$\Rightarrow$$              $$\displaystyle y_{1}=4$$
    Thus, the points are $$(1, 6)$$ and $$(-1, 4)$$
    Hence, option 'D' is correct.
  • Question 10
    1 / -0
    At what point of the curve $$\displaystyle y=2x^{2}-x+1$$ tangent is parallel to $$y = 3x + 4$$
    Solution
    Let the point is $$P(a,b)$$
    Now the given curve is $$y=2x^2-x+1$$
    Differentiating w.r.t $$x$$
    $$\cfrac{dy}{dx}=4x-1$$
    Thus slope of tangent at P is $$=\left(\cfrac{dy}{dx}\right)_{(a,b)}=4a-1$$
    But given the tangent is parallel to line $$y=3x+4$$
    $$\Rightarrow 4a-1=3\Rightarrow a=1$$
    Also the point P lies on the given curve,
    $$b=2a^2-a+1=2$$
    Therefore, the point P is $$(1,2)$$
    Hence, option 'B' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now