Self Studies

Application of Derivatives Test - 31

Result Self Studies

Application of Derivatives Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The points on the curve $$\displaystyle y^{2}=4a\left ( x+a\sin \frac{x}{a} \right )$$ at which the tangent is parallel to x axis lie on -
    Solution
    $$\displaystyle y^{2}=4a\left ( x+a\sin \frac{x}{a} \right )$$
    $$\Rightarrow \displaystyle 2y\frac{dy}{dx}=4a\left ( 1+a\cos \frac{x}{a}\times \frac{1}{a} \right )$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=\frac{2a}{y}\left ( 1+\cos \frac{x}{a} \right )$$
    Now for tangent to be parallel to x-axis,
    $$\displaystyle \frac{dy}{dx}=0=\frac{2a}{y}\left ( 1+\cos \frac{x}{a} \right )$$
    $$\Rightarrow \displaystyle \frac{x}{a}=\pi $$
    $$\Rightarrow \displaystyle x=a\pi $$
    $$\therefore \displaystyle y^{2}=4a\left ( a\pi +a\times 0 \right )$$
    $$\Rightarrow \displaystyle y^{2}=4a^{2}\pi =4ax$$
    Clearly, this point lie on a parabola.
    Hence, option 'B' is correct.
  • Question 2
    1 / -0
    A stone is dropped into a quiet lake and waves move in a circle at a speed of $$3.5 cm/sec$$. At the instant when the radius of the circular wave is $$7.5 cm$$. The enclosed area increases as fastly as.
    Solution
    Given $$r = 7.5 cm $$ ,$$\dfrac {dr} {dt}=3.5 cm/sec$$
    $$A = \pi r^2$$
    $$\dfrac {dA}{dt}  =2\pi r \times \dfrac {dr}{dt}$$

    $$\dfrac{dA}{dt}= 2  \pi \times  7.5 \times  3.5 $$

    $$\dfrac {dA}{dt}=52.5 \pi  cm^2/sec $$
  • Question 3
    1 / -0
    The normal to the curve $$\displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}$$ is perpendicular to $$x$$ axis at the point
    Solution
    Let the point be $$P\displaystyle \left ( x_{1},y_{1} \right )$$
    Now $$\displaystyle \sqrt{x}+\sqrt{y}=\sqrt{a}$$
    Differentiating w.r.t $$x$$
    $$\displaystyle \frac{1}{2\sqrt{x}}+\frac{1}{2\sqrt{y}}\times \frac{dy}{dx}=0 $$
    $$\displaystyle \frac{dy}{dx}=-\sqrt{\frac{y}{x}}$$
    Thus, slope of normal at P is $$ =\displaystyle -( \frac{dx}{dy}  )_{( x_{1},y_{1} )}=-\sqrt{\frac{x_{1}}{y_{1}}} $$
    If normal $$\displaystyle \perp $$ to x axis then $$\displaystyle \frac{dx}{dy}=\frac{a}{0} $$
    $$\displaystyle \therefore  y_1 = a\Rightarrow  x_1 = 0$$
    Therefore, required point is  $$(a, 0)$$
    Hence, option 'B' is correct.
  • Question 4
    1 / -0
    If equation of normal at a point $$\displaystyle \left ( m^{2},-m^{3} \right )$$ on the curve $$\displaystyle x^{3}-y^{2}=0\: \: is\: \: y=3mx-4m^{3}$$ then $$\displaystyle m^{2}$$ equals
    Solution
    $$\displaystyle x^{3}-y^{2}=0 $$
    $$\Rightarrow \displaystyle 3x^{2}-2y\left ( \frac{dy}{dx} \right )=0 $$
    $$\Rightarrow \displaystyle 3x^{2}=2y\left ( \frac{dy}{dx} \right ) $$
    $$\Rightarrow \displaystyle \frac{3x^{2}}{2y}=\frac{dy}{dx}$$
    $$\Rightarrow \displaystyle \left ( \frac{dy}{dx} \right )_{\left ( m^{2},-m^{3} \right )}=\frac{3\times m^{4}}{-2\times m^{3}}$$
    $$\therefore \displaystyle -\left ( \frac{dx}{dy} \right )=\frac{2}{3m}$$
    Therefore, equation of normal at given point is,
    $$\Rightarrow \displaystyle \left ( y+m^{3} \right )=\frac{2}{3m}\left ( x-m^{2} \right )$$
    $$\Rightarrow \displaystyle 3my+3m^{4}=2x-2m^{2}$$
    $$\Rightarrow \displaystyle 3my=2x-3m^{4}-2m^{2}$$
    $$\Rightarrow \displaystyle y=\frac{2x}{3m}-m^{3}-\frac{2}{3}m ..(1)$$
    but given equation of normal is, $$\displaystyle y=3mx-4m^{3} ..(2)$$
    Thus comparing (1) and (2), we get
    $$\displaystyle 3m=\frac{2}{3m}$$
    $$\Rightarrow \displaystyle m^{2}=\frac{2}{9}$$
    Hence, option 'D' is correct.
  • Question 5
    1 / -0
    The slope of the tangents to the curve $$y = (x + 1) (x - 3)$$ at the points where it crosses x - axis are
    Solution
    $$y = (x + 1)(x - 3) ..(1)$$

    Substitute $$y = 0$$ to get the point of intersection of this curve with $$x-axis$$

    $$0 = (x + 1) (x - 3)$$

    $$\Rightarrow x = -1, 3$$

    So the points are $$(-1, 0)$$ and $$(3, 0)$$

    Now differentiating eq. (1), we get

    $$\displaystyle \dfrac{dy}{dx}=\left ( x-3 \right )+\left ( x+1 \right )=2x-2 $$

    $$\Rightarrow \displaystyle \left ( \dfrac{dy}{dx} \right )=2\left ( x-1 \right )$$

    Thus slope at $$(-1,0)$$ is $$=\left (\dfrac{dy}{dx} \right )_{\left ( -1,0 \right )}=-4 $$

    and at $$(3,0)$$ is $$=\displaystyle \left ( \dfrac{dy}{dx} \right )_{\left ( 3,0 \right )}=4 $$

    Hence, option 'C' is correct.
  • Question 6
    1 / -0
    The points on the curve $$\displaystyle 9y^2=x^{3}$$ where the normal to the curve makes equal intercepts with coordinates axes is :
    Solution
    Let the point on the curve $$\displaystyle 9y^{2}=x^{3}$$ be $$P\left ( x_{1},y_{1} \right ) $$
    differentiating the curve w.r.t $$x$$
    $$\displaystyle 2\times 9\times y\times \frac{dy}{dx}=3x^{2}$$
    $$\Rightarrow \displaystyle \frac{dy}{dx}=\frac{x^{2}}{2\times 3y}$$
    $$\Rightarrow \displaystyle \left ( \frac{dy}{dx} \right )_{\left ( x_{1},y_{1} \right )}=\frac{x_{1}^{2}}{2\times 3y_{1}}$$
    Thus slope of Normal at P  $$=\displaystyle -\frac{dy}{dx}=\frac{-3y_{1}\times 2}{x_{1}^{2}}$$
    Given normal makes equal intercept
    $$\Rightarrow \displaystyle \frac{-3y_{1}\times 2}{x_{1}^{2}}=\pm 1$$
    $$\Rightarrow \displaystyle \frac{-3y_{1}\times 2}{x_{1}^{2}}=1$$
    $$\Rightarrow \displaystyle -3y_{1}\times 2=x_{1}^{2}$$ so $$9y_1^2\times 4=x_{1}^{4}\Rightarrow x_1^3 \times 4 = x_1^4$$
    So $$\displaystyle x_{1}=4,\: \: \: y=-\frac{8}{3}$$
    $$\Rightarrow \displaystyle \frac{-3y_{1}\times 2}{x_{1}^{2}}=-1 $$
    $$\Rightarrow \displaystyle 2\times 3y_{1}=x_{1}^{2}$$                           ..........(1)
    Also point lies point on the curve $$\displaystyle 9y^{2}=x^{3}$$
    $$\Rightarrow \displaystyle 9y_{1}^{2}=x_{1}^{3}$$
    $$\Rightarrow \displaystyle 9\times \frac{x_{1}^{4}}{36}=x_{1}^{3}$$
    $$\Rightarrow \displaystyle x_{1}=4$$
    $$\Rightarrow \displaystyle x_{1}=4,\: \: \: y_{1}=\frac{16}{6}=\frac{8}{3}$$
    $$\Rightarrow \displaystyle \left ( 4,\frac{8}{3} \right )$$
    Finally the points are $$\displaystyle \left ( 4,\frac{8}{3} \right )\: \: \: or\: \: \: \left ( 4,\frac{-8}{3} \right )$$
    Hence, option 'A' is correct.
  • Question 7
    1 / -0
    The coordinates of the points on the curve $$\displaystyle x=a\left ( \theta +\sin \theta  \right ),y=a\left ( 1-\cos \theta  \right )$$ where tangent is inclined an angle $$\displaystyle \dfrac{\pi }4$$ to the $$x-$$axis are -
    Solution
    The co-ordinates are $$x = \displaystyle a\left ( \theta +\sin \theta  \right );\: \: y=a\left ( 1-\cos \theta  \right )$$
    Thus, $$\displaystyle \frac{dx}{d\theta }=a\left ( 1+\cos \theta  \right )\displaystyle =a\left ( 2\cos^{2}\frac{\theta }{2}\right )$$ and $$\displaystyle \frac{dy}{d\theta }=a\sin \theta =2a\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}$$
    $$\therefore \displaystyle \dfrac{dy}{dx}=\tan \dfrac{\theta }{2}$$
    but, $$\displaystyle \frac{dy}{dx}=\tan \frac{\pi }{4}$$       (given)
    $$\therefore 1 = \tan \dfrac{\theta }{2}$$
    $$\Rightarrow \displaystyle \theta =\frac{\pi }{2}$$
    So the point is, $$\displaystyle x=a\left ( \theta +\sin \theta  \right )$$
    $$x = \displaystyle a\left ( \frac{\pi }{2}+1 \right )$$
    $$y = a(1 - 0)=a$$
    Therefore, the required point is $$\displaystyle \left ( a\left ( \frac{\pi }{2}+1 \right ),a \right )$$
    Hence, option 'C' is correct.
  • Question 8
    1 / -0
    If the curve $$y^2=ax^3-6x^2+b$$ passes through $$(0,\,1)$$ and has its tangent parallel to y-axis at $$x=2$$, then
    Solution
    Given equation of curve
    $$y^2=ax^3-6x^2+b$$     
    Since, the curve passes through $$(0,1)$$
    $$\Rightarrow b=1$$

    Since, the tangent is parallel to y-axis at $$x=2$$
    $$\Rightarrow y=8a-23$$
    So, point of tangency is $$(2,8a-23)$$

    Slope of tangent to curve
    $$2y\dfrac{dy}{dx}=3ax^2-12x$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{3ax^2-12x}{2y}$$
    Slope of tangent to curve at $$(2,8a-23)$$ is $$\dfrac{12a-24}{16a-46}$$

    Since, the tangent is parallel to y-axis
    $$\dfrac{12a-24}{16a-46}=\dfrac{1}{0}$$
    $$\Rightarrow 16a-46=0$$
    $$\Rightarrow a=\dfrac{23}{8}$$
  • Question 9
    1 / -0
    Let tangent at a point P on the curve $$\displaystyle { x }^{ 2m }={ y }^{ \tfrac { n }{ 2 }  }={ a }^{ \tfrac { 4m+n }{ 2 }  }$$ meets the x-axis and y-axis at A and B respectively, If AP:PB is $$\displaystyle \frac { n }{ \lambda m } $$, where P lies between A and B, then find the value of $$\displaystyle \lambda $$
    Solution
    $$\displaystyle { x }^{ 2m }{ y }^{ \tfrac { n }{ 2 }  }={ a }^{ \tfrac { 4m+n }{ 2 }  }$$
    $$\displaystyle 2m\ln x +\frac { n }{ 2 } \ln y=\frac { 4m+n }{ 2 }\ln a$$
    $$\displaystyle \frac { \left( 2m \right)  }{ x } +\left( \frac { n }{ 2 }  \right) \frac { 1 }{ y } \frac { dy }{ dx } =0$$
    $$\displaystyle \frac { dy }{ dx } =\left( \frac { -2m }{ x }  \right) \frac { 2y }{ n } $$
    Let $$P$$ be the point $$\displaystyle \left( { x }_{ 1 },{ y }_{ 1 } \right) $$
    So equation of tangent is
    $$\displaystyle y-{ y }_{ 1 }=\left( \frac { -4m }{ n } .\frac { { y }_{ 1 } }{ { x }_{ 1 } }  \right) \left( x-{ x }_{ 1 } \right) $$.......(i)
    Let Tangents meets the axes at $$A$$ and $$B$$ respectively
    $$\displaystyle A=\left( \frac { 4m+n }{ 4m } { x }_{ 1 },0 \right) \quad B=\left( 0,\frac { 4m+n }{ n } .{ y }_{ 1 } \right) $$
    Let $$P$$ divides $$AB$$ in ratio $$\displaystyle \mu :1$$
    $$\displaystyle \therefore \quad { x }_{ 1 }=\frac { \mu .0+1.\left( \dfrac { 4m+n }{ 4m }  \right) { x }_{ 1 } }{ \mu +1 } $$
    $$\displaystyle\therefore 4m+n=4m\left( \mu +1 \right) $$
    Also $$\displaystyle \mu \left( 4m+n \right) =n\left( \mu +1 \right)$$
    $$\displaystyle\therefore \quad \mu =\frac { n }{ 4m } $$
    $$\displaystyle \therefore \quad \lambda =4$$
  • Question 10
    1 / -0
    The line $$\dfrac x a +\dfrac  y  b = 1$$ touches the curve $$\displaystyle y=be^{-\tfrac xa}$$ at the point -
    Solution
    $$\displaystyle  y=b\times e^{-\frac{x}{a}}$$

    $$\Rightarrow \displaystyle \frac{dy}{dx}=b\times e^{-\tfrac{x}{a}}\times -\frac{1}{a}=-\frac{b}{a}e^{-\frac{x}{a}}$$

    Now the slope of given line is, $$\displaystyle m=-\frac{1}{a}\times \frac{b}{1}=-\cfrac{b}{a}$$

    Thus for the given line to be tangent to the given curve,

    $$\displaystyle -\frac{b}{a}=-\frac{b}{a}\times e^{-\dfrac{x}{a}}$$

    $$\Rightarrow \displaystyle e^{\dfrac{x}{a}}=1$$

    $$\Rightarrow x = 0\Rightarrow y = b$$

    Therefore, the point is  $$(0, b)$$

    Hence, option 'C' is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now