Self Studies

Application of Derivatives Test - 32

Result Self Studies

Application of Derivatives Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    At what values of $$a$$, the curve $$x^4+3ax^3+6x^2+5$$ is not situated below any of its tangent lines
    Solution
    $$y=4x^3+3ax^3+6x^2+5$$
    For given situation curve must be concave so,  $$\displaystyle\frac{d^2y}{dx^2}\,>\,0$$
    $$y'=4x^3+9ax^2+12x$$
    $$y''=12x^2+18ax+12\,>\,0=6(2x^2+3ax+2)\,>\,0$$
    $$D\,<\,0\;\;\Rightarrow\;\;9a^2-16\,<\,0$$
    $$\Rightarrow |a|\,<\,\displaystyle\frac{4}{3}$$
  • Question 2
    1 / -0
    The minimum value of the polynomial.
    $$p(x)=3{ x }^{ 2 }-5x+2$$
    Solution
    $$p(x)=3{ x }^{ 2 }-5x+2$$
    $$=3\left( x2-\frac { 5 }{ 3 } x+\frac { 2 }{ 3 }  \right) $$
    $$=3\left[ { x }^{ 2 }-\frac { 5 }{ 3 } x+\left( { \frac { 5 }{ 6 }  } \right) ^{ 2 }-\left( { \frac { 5 }{ 6 }  } \right) ^{ 2 }+\frac { 2 }{ 3 }  \right] $$
    $$=3\left[ \left( { x-\frac { 5 }{ 6 }  } \right) ^{ 2 }-\frac { 25 }{ 36 } +\frac { 2 }{ 3 }  \right] $$
    $$=3\left[ \left( { x-\frac { 5 }{ 6 }  } \right) ^{ 2 }+\frac { -25+24 }{ 36 }  \right] $$
    $$=3\left[ \left( { x-\frac { 5 }{ 6 }  } \right) ^{ 2 }-\frac { 1 }{ 36 }  \right] =3\left( { x-\frac { 5 }{ 6 }  } \right) ^{ 2 }-\frac { 1 }{ 12 } $$
  • Question 3
    1 / -0
    If the function $$\displaystyle f\left( x \right)=\left( { a }^{ 2 }-3a+2 \right) \cos { \frac { x }{ 2 }  } +\left( a-1 \right) x$$ possesses critical points, then $$a$$ belongs to the interval
    Solution
    Given
    $$\displaystyle f\left( x \right) =\left( { a }^{ 2 }-3a+3 \right) \cos { \frac { x }{ 2 }  } +\left( a-1 \right) x$$
    $$\displaystyle \Rightarrow f'\left( x \right) =\frac { -1 }{ 2 } \left( a-1 \right) \left( a-2 \right) \sin { \left( \frac { x }{ 2 }  \right)  } +\left( a-1 \right) $$
    $$\displaystyle \Rightarrow f'\left( x \right) =\left( a-1 \right) \left[ 1-\frac { 1 }{ 2 } \left( a-2 \right) \sin { \left( \frac { x }{ 2 }  \right)  }  \right] $$
    If $$f(x)$$ possesses critical points, then
    $$f'(x)=0$$ $$\displaystyle \Rightarrow \left( a-1 \right) \left[ 1-\left( \frac { a-2 }{ 2 }  \right) \sin { \frac { x }{ 2 }  }  \right] =0$$
    $$\Rightarrow a=1$$ and $$\displaystyle 1-\left( \frac { a-2 }{ 2 }  \right) \sin { \frac { x }{ 2 }  } =0$$
    $$\Rightarrow a=1$$ and $$\displaystyle \sin { \left( \frac { x }{ 2 }  \right)  } =\frac { 2 }{ a-2 } $$
    $$\Rightarrow a=1$$ and $$\displaystyle \left| \frac { 2 }{ a-2 }  \right| \le 1$$
    $$\Rightarrow a=1$$ and $$\left| a-2 \right| \ge 2$$
    $$\Rightarrow a=1$$ and $$a-2\ge 2$$ or $$a-2\le -2$$
    $$\Rightarrow a=1$$ and $$a\ge 4$$ or $$a\le 0$$
    $$\Rightarrow a=1$$ and $$a\in (-\infty ,0]\cup [4,\infty )$$
    Therefore, $$a\in (-\infty ,0]\cup \left\{ 1 \right\} \cup [4,\infty )$$
  • Question 4
    1 / -0
    The curve which passes through $$(1, 2)$$ and whose tangent at any point has a slope that is half of slope of the line joining origin to the point of contact, is -
    Solution

    Let the arbitrary point be $$x,y.$$
    Now the slope of the line joining the origin and the point is 
    $$=\dfrac{y-0}{x-0}$$
    $$=\dfrac{y}{x}$$.
    The equation of the curve
    $$y=f(x)$$.
    Now slope of the tangent 
    $$=\dfrac{dy}{dx}$$
    $$=\dfrac{y}{2x}$$ ... as per the given condition.
    Hence
    $$2\dfrac{dy}{y}=\dfrac{dx}{x}$$
    Integrating both sides we get 
    $$2\ln y=\ln x+\ln c$$
    Now $$y_{x=1}=2$$
    Hence
    $$2\ln (2)=\ln (1)+\ln (c)$$
    Or 
    $$c=2^{2}=4$$
    Hence
    $$2\ln y=\ln x+\ln 4$$
    Or 
    $$\ln (y^{2})=\ln 4x$$
    Or 
    $$y^{2}=4x$$ is the required equation.
    This is an equation of parabola.

  • Question 5
    1 / -0
    The lines tangent to the curve $$x^3-y^3+x^2y-yx^2+3x-2y=0$$ and $$x^5-y^4+2x+3y=0$$ at the origin intersect at an angle $$\theta$$ equal to
    Solution
    Given equation of curve $$x^3-y^3+x^2y-yx^2+3x-2y=0$$
    Differentiating we get
    $$\displaystyle 3{ x }^{ 2 }-3{ y }^{ 2 }\frac { dy }{ dx } +x^{ 2 }\frac { dy }{ dx } +2xy-2xy-x^{ 2 }\frac { dy }{ dx } +3-2\frac { dy }{ dx } =0$$

    $$ (3{ y }^{ 2 }+2)\dfrac { dy }{ dx } =3{ x }^{ 2 }+3$$

    $$\Rightarrow \dfrac { dy }{ dx } =\dfrac { 3{ x }^{ 2 }+3 }{ (3{ y }^{ 2 }+2) } $$    

    Slope of tangent to curve at (0,0) is $$m_1=\dfrac{3}{2}$$

    Given equation of other curve $$x^5-y^4+2x+3y=0$$ 
    On differentiation ,
    $$\displaystyle 5{ x }^{ 4 }-4{ y }^{ 3 }\frac { dy }{ dx } +2+3\frac { dy }{ dx } =0$$

    $$\Rightarrow \dfrac { dy }{ dx } =\dfrac { 5{ x }^{ 4 }+2 }{ (4{ y }^{ 3 }-3) } $$
    Slope of tangent to the curve at (0,0) is $$m_2=-\dfrac{2}{3}$$

    Here, $$m_1m_2=-1$$
    Hence, the lines are perpendicular.
  • Question 6
    1 / -0
    A curve $$\displaystyle y=f\left( x \right) ;\left( y>0 \right) $$  passes thorugh $$(1,1)$$ and at point $$\displaystyle P(x,y)$$ tangents cuts x-axis and y-axis at A and B respectively. If P divides AB  internally in the ratio $$3 : 2$$, then the value of $$\displaystyle f\left( \frac { 1 }{ 8 }  \right) $$ is
    Solution
    $$\displaystyle \frac { dy }{ dx } =-\frac { k }{ h } =-\frac { 2y }{ 3x } $$
    $$\displaystyle \Rightarrow \quad 3\frac { dy }{ y } +2\frac { dx }{ x } =0$$
    $$\displaystyle \Rightarrow \quad 3\ln { y }^{ 3 }{ x }^{ 3 }=C$$
    $$\displaystyle \because \quad $$passing through $$(1,1)$$
    $$\displaystyle \Rightarrow \quad c=0$$
    $$\displaystyle \Rightarrow \quad { y }^{ 3 }{ x }^{ 2 }=1$$
    at $$\displaystyle x=\frac { 1 }{ 8 }$$
    $$ \Rightarrow \quad y=4$$
  • Question 7
    1 / -0

    Directions For Questions

    Consider the function $$f(x) = b  \ln x - x$$ on the interval $$(0,\infty) $$ where $$b$$ is positive real constant.
    On the basis of above information, answer the following questions

    ...view full instructions

    If the line $$x -y = 0$$ is tangent to $$f(x) = b \ln x - x$$, then $$b$$ lies in the interval
    Solution
    Given equation of curve is
    $$y=b\ln x-x$$
    Also, given $$x-y=0$$ is tangent to the curve.
    So, let $$P(x_1,x_1)$$ be the point of tangency.
    $$x_1=b\ln {x_1}-{x_1}$$
    $$2x_1= b\ln {x_1}$$   ....(1)

    Slope of tangent to the curve at P$$=\dfrac{b}{x_1}-1$$
    Slope of given tangent $$=1$$
    $$\Rightarrow \dfrac{b}{x_1}-1=1$$
    $$\Rightarrow x_1=\dfrac{b}{2}$$
    Substitute this value in (1), we get
    $$b=b\ln {\dfrac{b}{2}}$$
    $$\Rightarrow \ln {\dfrac{b}{2}}=1$$
    $$\Rightarrow \dfrac{b}{2}=e$$
    $$\Rightarrow b=2e$$
    Since, $$2< e<3$$
    $$\Rightarrow 4<b<6$$
  • Question 8
    1 / -0
    If f(x) = $$\dfrac{x}{ sin x}$$ and g(x) = $$\dfrac{x}{tanx}$$ where 0<x $$\leq$$ 1, then in this interval $$f(x)$$ is
    Solution
    We have f(x) $$= \displaystyle \dfrac{x}{ sin x }$$ and g(x) $$=\displaystyle \dfrac{x}{tan x}$$
    $$\therefore f'(x) =\displaystyle \dfrac{sin x - x cos x }{sin^2 x }$$ and
    $$g'(x)=\displaystyle \dfrac{tan x - x sec^2 x}{tan^2 x}$$
    Let $$\Phi (x0) = sin x - x cos x $$ and $$\Psi (x) = tan x - x sec^2 x$$
    Then, f'(x) = $$\Phi (x) / sin^2 x $$ and $$g'(x) = \Psi (x)/ tan^2$$
    Now, $$\Phi(x) = cos x - cos x + x sin x = x sin x$$ 
    and $$\Psi (x) = sec^2 x - sec^2 x - 2x sec^2 x tan x = -2x sec^2 x tan x$$
    For $$0 < x \leq 1$$, we have x > 0 , sin x >0, tan x >0, sec x >0 
    $$\therefore \Phi (x) = x sin x >x $$ and $$\Psi (x( <0$$ for $$0<x \leq 1$$
    $$\Rightarrow \Phi (x) $$ is increasing on (0,1) and $$\Psi (x)$$ is decreasing on (0,1)
    $$\Rightarrow \Phi (x) > Phi(0) $$ and $$\Psi (x) < \Psi (0) \Rightarrow \Phi (x) >0$$ and $$\Psi (x) <0$$
    $$\therefore f(x) =\Phi (x) /sin^2 x >0$$ & g(x) = $$\Phi (x)/ tan^2 x <0$$
    $$\Rightarrow $$ f(x) is increasing on (0,1) and g(x) is decreasing on (0,1)
  • Question 9
    1 / -0
    If the tangent to the curve $$x = a(8 + sin \theta), y = a(1 + cos \theta )$$ at $$\theta = \displaystyle \frac{\pi}{3}$$ makes an angle $$\alpha$$ with x-axis, then $$\alpha$$ is equal to
    Solution
    $$x=a(8+\sin \theta)$$

    $$\frac{d x}{d \theta}=a \cos \theta$$

    $$y=a(1+\cos \theta)$$
    $$\frac{d y}{d \theta}=-a \sin \theta$$

    Now,
    $$\frac{d y}{d \theta}=-a \sin \theta$$
    $$\frac{d x}{d \theta}=a \cos \theta$$
    $$\frac{d y}{d x}=-\tan \theta$$
    $$\frac{d y}{d x}\left(\operatorname{at} \theta=\frac{\pi}{3}\right)=-\sqrt{3}=m$$

    Now,
    $$m=\tan \alpha$$
    $$\Rightarrow \tan \alpha=-\sqrt{3}$$

    Hence,
    $$\alpha=\frac{2 \pi}{3}$$
  • Question 10
    1 / -0
    Determine the intervals over which the function is decreasing, increasing, and constant.

    Solution
    As we can see from the graph, when $$x$$ is increasing till $$3$$, $$y$$ is also increasing 
    Further increment in $$x$$ reduces the $$y$$'s values.
    It means that upto $$x=3$$, function is increasing and after $$x=3$$ function is decreasing.
    Hence, increasing in the interval $$(-\infty,3]$$ ; decreasing in the interval $$[3,\infty)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now