Given
$$\displaystyle f\left( x \right) =\left( { a }^{ 2 }-3a+3 \right) \cos { \frac { x }{ 2 } } +\left( a-1 \right) x$$
$$\displaystyle \Rightarrow f'\left( x \right) =\frac { -1 }{ 2 } \left( a-1 \right) \left( a-2 \right) \sin { \left( \frac { x }{ 2 } \right) } +\left( a-1 \right) $$
$$\displaystyle \Rightarrow f'\left( x \right) =\left( a-1 \right) \left[ 1-\frac { 1 }{ 2 } \left( a-2 \right) \sin { \left( \frac { x }{ 2 } \right) } \right] $$
If $$f(x)$$ possesses critical points, then
$$f'(x)=0$$ $$\displaystyle \Rightarrow \left( a-1 \right) \left[ 1-\left( \frac { a-2 }{ 2 } \right) \sin { \frac { x }{ 2 } } \right] =0$$
$$\Rightarrow a=1$$ and $$\displaystyle 1-\left( \frac { a-2 }{ 2 } \right) \sin { \frac { x }{ 2 } } =0$$
$$\Rightarrow a=1$$ and $$\displaystyle \sin { \left( \frac { x }{ 2 } \right) } =\frac { 2 }{ a-2 } $$
$$\Rightarrow a=1$$ and $$\displaystyle \left| \frac { 2 }{ a-2 } \right| \le 1$$
$$\Rightarrow a=1$$ and $$\left| a-2 \right| \ge 2$$
$$\Rightarrow a=1$$ and $$a-2\ge 2$$ or $$a-2\le -2$$
$$\Rightarrow a=1$$ and $$a\ge 4$$ or $$a\le 0$$
$$\Rightarrow a=1$$ and $$a\in (-\infty ,0]\cup [4,\infty )$$
Therefore, $$a\in (-\infty ,0]\cup \left\{ 1 \right\} \cup [4,\infty )$$