Self Studies

Application of Derivatives Test - 33

Result Self Studies

Application of Derivatives Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The slope of the tangent to the curve $$x={t}^{2}+3t-8$$, $$y=2{t}^{2}-2t-5$$ at the point $$(2,-1)$$ is
    Solution
    Slope to any curve is given by $$\dfrac{dy}{dx}$$

    Here, $$\cfrac{dx}{dt}=2t+3$$    ...(1) 
    And $$\cfrac{dy}{dt}=4t-2$$       ...(2)
    Dividing (2) by (1), we get $$\cfrac {dy}{dx} = \cfrac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{4t-2}{2t+3}$$
    At point $$(2,-1)$$, $$t=2$$
    So slope is given by,
    $$\Rightarrow \dfrac{dy}{dx}=\dfrac{4\times 2-2}{2\times 2+3}=\dfrac{6}{7}$$
  • Question 2
    1 / -0
    The line $$y=mx+1$$ is a tangent to the curve $${y}{^2}=4x$$, if the value of $$m$$ is
    Solution
    Lets put $$y=mx+1$$ in $${y}^{2}=4x$$ we get
    $${(mx+1)}^{2}=4x$$
    $$\Rightarrow {m}^{2}{x}^{2}+1+2mx-4x=0$$
    Tangent touches a curve at one point so descriminant of the equation should be zero. 
    $$\Rightarrow {(2m-4)}^{2}-4\times 1\times {m}^{2}=0$$
    $$\Rightarrow 4{m}^{2}+16-16m-4{m}^{2}=0$$
    $$\Rightarrow m=1$$
  • Question 3
    1 / -0
    The abscissa of the points, where the tangent to curve $$y={x}^{3} - 3{x}^{2} - 9x+5$$ is parallel to x-axis, are
    Solution
    Given, $$y={ x }^{ 3 }-3{ x }^{ 2 }-9x+5$$
    $$\Rightarrow \dfrac { dy }{ dx } =3{ x }^{ 2 }-6x-9$$
    We know that, this equation gives the slope of the tangent to the curve. The tangent is parallel to x-axis,
    $$\therefore       \dfrac { dy }{ dx } =0$$
    $$\Rightarrow    3{ x }^{ 2 }-6x-9=0$$
    $$\Rightarrow x=-1,3$$
  • Question 4
    1 / -0
    The points on the curve $$9{y}^{2}={x}^{3}$$, where the normal to the curve makes equal intercepts with the axes are
    Solution
    Let the point on curve be $$(h,k)$$
    $$y^2= \dfrac{x^3}{9}\\
    2y.\dfrac{dy}{dx}= \dfrac{1}{9} .3 x^2\\
    \therefore \dfrac{dy}{dx}= \dfrac{x^2}{6y}$$
    $$\dfrac{dy}{dx}$$ gives slope of curve at given point
    $$\dfrac{dy}{dx}\;at\;(h,k) = \dfrac{h^2}{6k}$$
    but this is the slope of tangent and we need slope of normal
    As we know that slope of normal$$\times$$ slope of tangent is $$-1$$
    $$\therefore$$ slope of normal is $$\dfrac{-6k}{h^2}$$
    Given in question that normal makes equal intercepts on axes  which means slope of normal is either $$1$$ or $$-1$$
    $$-6k=h^2$$ and $$6k=h^2$$
    Now go through the option you will that option A satisfy our equation
  • Question 5
    1 / -0
    Angle between $${ y }^{ 2 }=x$$ and $${ x }^{ 2 }=y$$ at the origin is
    Solution
    It is clear from the graph that both the curves have a tangent at the coordinate axes, so the angle between the curves is $$\dfrac { \pi  }{ 2 } $$.

    Alternative
    Given curves are $${ y }^{ 2 }=x$$ and $${ x }^{ 2 }=y$$

    On differentiating with respect to $$x$$, we get

    $$2y\dfrac { dy }{ dx } =1$$ and $$2x=\dfrac { dy }{ dx } $$

    $$\Rightarrow \dfrac { dy }{ dx } =\dfrac { 1 }{ 2y } $$ and $$\dfrac { dy }{ dx } =2x$$

    At $$\left( 0,0 \right) $$

    $${ m }_{ 1 }=\dfrac { dy }{ dx } =\infty $$ and $${ m }_{ 2 }=\dfrac { dy }{ dx } =0$$

    $$\therefore \tan { \theta  } =\dfrac { { m }_{ 2 }-{ m }_{ 1 } }{ 1+{ m }_{ 1 }{ m }_{ 2 } } =\infty $$

    $$\Rightarrow \theta =\dfrac { \pi  }{ 2 } $$

  • Question 6
    1 / -0
    If the line $$\alpha\,x+by+c=0$$ is a tangent to the curve $$xy=4$$, then
    Solution
    Slope of line $$ax+by+c=0$$ is
    $$\Rightarrow\;-\dfrac{a}{b}$$
    $$y=\dfrac{4}{x}=1,\,\dfrac{dy}{dx}=-\dfrac{4}{x^2}$$,
    $$-\dfrac{a}{b}=-\dfrac{4}{x^2}\Rightarrow\,\dfrac{a}{b}=\dfrac{4}{x^2} > 0$$
    $$a < 0,\,b < 0$$
  • Question 7
    1 / -0
    Let $$y=e^{x^2}$$ and $$y=e^{x^2}\sin\, x$$ be two given curves. Then, angle between the tangents to the curves at any point their intersection is 
    Solution
    For intersecting points, $$e^{x^2}=e^{x^2}\sin\,x$$
    $$\Rightarrow e^{x^2}(\sin x-1)=0$$
    $$\Rightarrow e^{x^2}=0$$ or $$\sin\,x=1$$

    But $$e^{x^2}\neq 0\Rightarrow \sin x=1$$
    $$\Rightarrow x=\dfrac{\pi}{2}$$

    Now, 
    $$y=e^{x^2}$$ 

    $$\therefore \dfrac{dy}{dx}=e^{x^2}.2x=2xe^{x^2}$$         $$[\because \sin\,x=1, \cos \, x = 0]$$ 

    Since, both the curves has equal slope.
    Hence, angle between the tangents at intersecting point is $$0$$.
  • Question 8
    1 / -0
    The slope at any point of a curve $$y=f\left( x \right) $$ is given by $$\dfrac { dy }{ dx } =3{ x }^{ 2 }$$ and it passes through $$\left( -1,1 \right) $$. The equation of the curve is
    Solution
    Given, $$\dfrac { dy }{ dx } =3{ x }^{ 2 }$$
    $$\Rightarrow dy=3{ x }^{ 2 }dx$$
    On integrating, we get
    $$y=\dfrac { 3{ x }^{ 3 } }{ 3 } +c$$
    $$\Rightarrow y={ x }^{ 3 }+c$$
    It passes through $$\left( -1,1 \right) $$.
    $$\therefore 1={ \left( -1 \right)  }^{ 3 }+c$$
    $$\Rightarrow c=2$$
    $$\therefore y={ x }^{ 3 }+2$$
  • Question 9
    1 / -0
    Suppose that the equation $$f\left( x \right) ={ x }^{ 2 }+bx+c=0$$ has two distinct real roots $$\alpha $$ and $$\beta $$. The angle between the tangent to the curve $$y=f\left( x \right) $$ at the point $$\left( \dfrac { \alpha +\beta  }{ 2 } ,f\left( \dfrac { \alpha +\beta  }{ 2 }  \right)  \right) $$ and the positive direction of the $$x$$-axis is
    Solution
    Since, $$\alpha $$ and $$\beta $$ are the roots of 
    $$f\left( x \right) ={ x }^{ 2 }+bx+c$$
    $$\therefore \alpha +\beta =-b$$ and $$\alpha \beta =c$$
    $$\therefore f\left( \dfrac { \alpha +\beta  }{ 2 }  \right) ={ \left( \dfrac { \alpha +\beta  }{ 2 }  \right)  }^{ 2 }+b\left( \dfrac { \alpha +\beta  }{ 2 }  \right) +c$$
          $$={ \left( -\dfrac { b }{ 2 }  \right)  }^{ 2 }+b\left( -\dfrac { b }{ 2 }  \right) +c$$
          $$=\dfrac { { b }^{ 2 } }{ 4 } -\dfrac { { b }^{ 2 } }{ 2 } +c=-\dfrac { { b }^{ 2 } }{ 4 } +c$$

    Now, $$\dfrac { dy }{ dx } =f^{ \prime  }\left( x \right) =2x+b$$

    At point, $$\left( \dfrac { \alpha +\beta  }{ 2 } ,f\left( \dfrac { \alpha +\beta  }{ 2 }  \right)  \right) $$, i.e., $$\left( -\dfrac { b }{ 2 } ,-\dfrac { { b }^{ 2 } }{ 4 } +c \right) $$,

    $$\dfrac { dy }{ dx } =2\left( -\dfrac { b }{ 2 }  \right) +b=0$$

    Hence, the slope of the tangent to the curve and the positive direction of $$x$$-axis is $${ 0 }^{ }$$.
  • Question 10
    1 / -0
    The equation of one of the curves whose slope at any point is equal to $$y+2x$$ is
    Solution
    Given, $$\dfrac{dy}{dx}=y+2x$$
    Put $$y+2x=z$$
    $$\Rightarrow\;\dfrac{dy}{dx}+2=\dfrac{dz}{dx}$$
    $$\Rightarrow\;\dfrac{dy}{dx}=\dfrac{dz}{dx}-2\;\dots(ii)$$
    From Eqs. (i) and (ii)
    $$\dfrac{dz}{dx}-2=z$$
    $$\Rightarrow\;\int\dfrac{dz}{.z+2}=\int\,dx$$
    $$\Rightarrow\;log(z+2)=x+c$$
    $$\Rightarrow\;log(y+2x+2)=x+c$$
    $$\Rightarrow\;y+2x+2=e^{x+c}$$
    $$\Rightarrow\;y+2x+2=e^x.e^c$$
    $$\Rightarrow\;y=2[e^x-x-1]$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now