Self Studies

Application of Derivatives Test - 35

Result Self Studies

Application of Derivatives Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Identify the false statement:
    Solution
    The numbers where $$f'\left( x \right) =0$$ are called stationary numbers
    The numbers where $$f'\left( x \right) =0$$ or $$f'\left( x \right) $$ doesnt exist are called critical numbers
    Therefore all critical numbers are not stationary numbers
    So option $$D$$ is false statement
  • Question 2
    1 / -0
    The percentage error in the $$11^{th}$$ root of the number $$28$$ is approximately ____________ times the percentage error in $$28$$
    Solution
    Suppose $$y = x^{11}$$
    $$dy = 11x^{10}dx$$
    Dividing by y on both sides, we have $$ \cfrac{\Delta y}{y} = \cfrac{11x^{10}\Delta x}{y} = \cfrac{11x^{10}\Delta x}{x^{11}}$$
    $$\therefore \cfrac{\Delta y}{y} = \cfrac{11 \Delta x}{x}$$

    Here, when $$y = 28$$, $$x$$ will be the $$11^{th}$$ root of $$28$$.
    $$\therefore \cfrac{\Delta (28)}{28} = \cfrac{11 \Delta (\sqrt[11]{28})}{\sqrt[11]{28}}$$
    Hence, the percentage error in the $$11$$th root of $$28$$ would approximately be $$\cfrac{1}{11}$$ times the error in $$28$$
  • Question 3
    1 / -0
    The slope of the normal to the curve $$y = 3x^2$$ at the point whose $$x$$-coordinate $$2$$ is
    Solution
    $$y=3x^{2}$$. Differentiating the equation of the curve with respect to $$x$$.
    $$\dfrac{dy}{dx}=6x$$
    Now
    Slope$$_{x=2}=\dfrac{dy}{dx}|_{x=2}$$
    $$=6(2)$$
    $$=12$$.
    Hence the slope of the tangent at $$x=2$$ is $$12$$. Since the normal is perpendicular to the tangent, therefore, the
    Slope$$_\text{normal}\times$$Slope$$_\text{tangent}=-1$$ or Slope$$_\text{normal}=\dfrac{-1}{\text{Slope}_\text{tangent}}=\dfrac{-1}{12}$$
  • Question 4
    1 / -0
    The slope of the tangent to the curve $$y=3{ x }^{ 2 }+3\sin { x } $$ at $$x=0$$ is
    Solution
    $$y=3x^2+3\sin x$$
    $$\Rightarrow \dfrac{dy}{dx}=6x+3\cos x$$
    Thus slope of tangent to the given curve at $$x=0$$ is
    $$=\dfrac{dy}{dx}\bigg|_{x=0}=(6x+3\cos x)\bigg|_{x=0}=6(0)+3\cos 0=0+3\cdot 1=3$$
  • Question 5
    1 / -0
    Consider the following statements:
    $$1. y = \dfrac {e^{x} + e^{-x}}{2}$$ is an increasing function on $$[0, \infty)$$.
    $$2. y = \dfrac {e^{x} - e^{-x}}{2}$$ is an increasing function on $$(-\infty, \infty)$$.
    Which of the above statements is/are correct?
    Solution

    $$y=\dfrac { { e }^{ x }+{ e }^{ -x } }{ 2 } =\cosh x$$
    $$y=\dfrac { { e }^{ x }-{ e }^{ -x } }{ 2 } =\sinh x$$
    Both are increasing functions
    Hence, both the statements are correct.

  • Question 6
    1 / -0
    What is the slope of the tangent to the curve $$ x = t^2 + 3t - 8, y = 2t^2 - 2t - 5$$ at t = 2 ?
    Solution
    Differentiating $$x,y$$ w.r.t $$t,$$ we get
    $$\dfrac { dy }{ dt } =\dfrac { d }{ dt } (2t^2-2t-5)=4t-2\\ \dfrac { dx }{ dt } =\dfrac { d }{ dt } (t^2+3t-8)=2t+3\\$$
    $$\therefore  \dfrac { dy }{ dx } =\dfrac { \left( \dfrac { dy }{ dt }  \right)  }{ \left( \dfrac { dx }{ dt }  \right)  } =\dfrac { 4t-2 }{ 2t+3 } $$
    At $$t=2$$ derivative will be $$\dfrac {dy}{dx}=\dfrac {4\times 2-2}{2\times 2+3}=\dfrac {6}{7}$$
    Thus, the slope of tangent is $$\dfrac{6}{7}$$.
  • Question 7
    1 / -0
    If the tangent to the function $$y = f(x)$$ at $$(3, 4)$$ makes an angle of $$\dfrac {3\pi}{4}$$ with the positive direction of x-axis in anticlockwise direction then $$f'(3)$$ is
    Solution
    Given $$y=f(x)$$
    Differentiating w.r.t x, we get
    $$y' = f'(x)$$ which is the slope of the tangent


    $$f'(3) = \tan \dfrac {3\pi}{4} = -\tan \dfrac {\pi}{4} = -1$$
    Hence, $$f'(3)=-1$$.
  • Question 8
    1 / -0
    How many tangents are parallel to x-axis for the curve $$ y = x^2 - 4x + 3$$ ?
    Solution
    Slope of the tangent is $$\dfrac {dy} {dx}$$

    So, $$\dfrac{dy}{dx}=2x-4$$

    Tangent parallel to x-axis. So, slope of tangent should be $$0.$$

    $$\Rightarrow 2x-4=0$$

    $$\Rightarrow x=2$$ is the only point where slope is parallel to x-axis.

    So, only 1 tangent exists.
  • Question 9
    1 / -0
    The slope of the tangent to the curve given by $$x = 1 - \cos { \theta  }$$, $$y = \theta -\sin { \theta  } $$ at $$\theta = \dfrac { \pi  }{ 2 } $$ is
    Solution
    $$y=\theta -\sin\theta$$ 
    $$\Longrightarrow \dfrac { dy }{ d\theta  } =1-\cos\theta$$ 
    $$x=1-\cos\theta$$ 
    $$\Longrightarrow \dfrac { dx }{ d\theta  } =sin\theta $$
    Slope of the tangent is $$\dfrac{dy}{dx} $$
    $$\Longrightarrow \dfrac{dy}{dx} =\dfrac { 1-\cos\theta}{\sin\theta}$$

    At $$\theta =\dfrac { \pi  }{ 2 } $$
    $$\Longrightarrow \dfrac { dy }{ dx } =\dfrac { 1-\cos\frac { \pi  }{ 2 }  }{ \sin\frac { \pi  }{ 2 }  } =1$$
  • Question 10
    1 / -0
    Consider the following in respect of the function $$f(x) = \left\{\begin{matrix}2+ x, & x \geq 0\\ 2 - x, & x < 0\end{matrix}\right.$$
    1. $$\displaystyle \lim_{x \rightarrow 1} f(x)$$ does not exist.
    2. f(x) is differentiable at x = 0.
    3. f(x) is continuous at x = 0.
    Which of the above statements is/are correct?
    Solution
    Left hand limit$$ = \lim_{x\to 1^-}{f(x)}$$
    $$= \displaystyle \lim_{h\to 0}{f(1-h)}$$
    $$=\displaystyle \lim_{h\to 0}2+(1-h)=2+1=3$$
    Right hand limit$$ = \displaystyle \lim_{x\to 1^+}{f(x)}$$
    $$= \displaystyle \lim_{h\to 0}{f(1+h)}$$
    $$=\displaystyle \lim_{h\to 0}2+(1+h)=2+1=3$$
    So, the limit exists at x=1

    Left hand limit$$ =\displaystyle  \lim_{x\to 0^-}{f(x)}$$
    $$= \displaystyle \lim_{h\to 0}{f(0-h)}$$
    $$=\displaystyle \lim_{h\to 0} 2-(0-h)=2-0=2$$
    Right hand limit$$ = \displaystyle \lim_{x\to 0^+}{f(x)}$$
    $$= \displaystyle \lim_{h\to 0}{f(0+h)}$$
    $$=\displaystyle \lim_{h\to 0}2+(0+h)=2+0=2$$
    So, LHL=RHL=f(0)
    So, f(x) is continuous at x=0

    Right hand limit$$ = \displaystyle \lim_{h\to 0}\dfrac{f(0+h)-f(0)}{h}$$
    $$= \displaystyle \lim_{h\to 0}\dfrac{(2+(0+h))-2}{h}$$
    $$=\displaystyle \lim_{h\to 0}\dfrac{h}{h}=1$$
    Left hand limit$$ = \displaystyle \lim_{h\to 0}\dfrac{f(0-h)-f(0)}{-h}$$
    $$= \displaystyle \lim_{h\to 0}\dfrac{(2-(0-h))-(2)}{-h}$$
    $$=\displaystyle \lim_{h\to 0}\dfrac{h}{-h}=-1$$
    LHL$$\neq$$RHL
    So, f(x) is not differentiable at x=0

    The answer is option (B)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now