Self Studies

Application of Derivatives Test - 36

Result Self Studies

Application of Derivatives Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What is the slope of the tangent to the curve $$y=sin^{-1}(sin^2x)$$ at $$x=0$$ ?
    Solution
    Slope of tangent to a curve f(x), at a point $$({x}_{o},{y}_{o})$$ is given by $$f'(x)$$,
     where $$f'(x)$$ is derivative of f(x) at $$x={x}_{o}$$
    $$f(x) =\sin^{-1}({\sin ^{ 2 }{ x } })$$
    $${x}_{o}=0$$
    $$f'\left( x \right) =\cfrac { df\left( x \right)  }{ dx } =\cfrac { df(x) }{ d\sin ^{ 2 }{ x }  } \times \cfrac { d\sin ^{ 2 }{ x }  }{ d\sin x } \times \cfrac { d\sin x }{ dx } $$
     $$f'\left( x \right) =\cfrac { 1 }{ \sqrt { 1-\sin ^{ 2 }{ x }  }  } \times 2\sin x\times \cos x$$
     $$f'\left( 0 \right) =0$$
    Slope of tangent to the curve is 0
  • Question 2
    1 / -0
    Find the slope of the normal to the curve $$4x^3+6x^2-5xy-8y^2+9x+14=0$$T the point $$-2, 3$$.
    Solution
    The given curve is $$4x^3+6x^2-5xy-8y^2+9x+14=0$$

    Differentiating above equation w.r.t $$x$$, we get

    $$12{ x }^{ 2 }+12x-5x\cfrac { dy }{ dx } -5y-16y\cfrac { dy }{ dx } +9=0$$

    $$\Rightarrow \cfrac { dy }{ dx } =\cfrac { 12x^{ 2 }+12x-5y+9 }{ \left( 5x+16y \right)  } $$

    At $$\left( x,y \right) \equiv \left( -2,3 \right) $$

    $$m=\cfrac { dy }{ dx } =\dfrac{12(4)+12(-2)-5(3)+9}{5(-2)+16(3)}=\dfrac{18}{38}=\dfrac{9}{19}$$ is the slope of tangent to the curve
    Slope of normal is $$-\dfrac{1}{m}=-\dfrac{19}{9}$$

  • Question 3
    1 / -0
    A mirror in the first quadrant is in the shape of a hyperbola whose equation is xy = 1. A light source in the second quadrant emits a beam of light that hits the mirror at the point (2,1/2). If the reflected ray is parallel to the y-axis the slope of the incident beam is 

    Solution
    Slope of tangent at $$\left ( 2, \frac{1}{2} \right )$$
    $$m=-\dfrac{1}{4}$$
    $$tan \theta =-\dfrac{1}{y}$$

    $$\theta =\phi -90^o$$
    $$tan\theta =4$$
    Slope of incident ray $$= m$$ 
    $$\left | \dfrac{m-\left ( -\dfrac{1}{4} \right )}{1+m\left ( -\dfrac{1}{4} \right )} \right |=tan \theta =4$$

    $$\left | \dfrac{4m+1}{4-m} \right |=4$$

    $$4m + 1 = 16 - 4m$$
    $$m=\dfrac{15}{8}$$
  • Question 4
    1 / -0
    The value of $$K$$ in order that $$f(x) = \sin x - \cos x - Kx + 5$$ decreases for all positive real values of $$x$$ is given by
    Solution
    Given : $$f(x)=\sin x - \cos x - Kx+5$$
    $$f(x)$$ decrease for all $$x$$ if $$f'(x)<0$$ 
    $$f'(x) = \cos x + \sin x - K<0$$
    $$\therefore k > \cos x + \sin x$$
    We know that, $$\cos x+\sin x=\sqrt{2}\left({\dfrac{1}{\sqrt2}\cos x+\dfrac{1}{\sqrt2}\sin x}\right)=\sqrt2\left({\sin\dfrac{\pi}{4}\cos x}+\cos\dfrac{\pi}{4}\sin x\right)=\sqrt2(\sin(\dfrac{\pi}{4}+x))$$
    and,
    $$-1\le\sin(\dfrac{\pi}{4}+x)\le1\Rightarrow -\sqrt2\le\sqrt2\cdot\sin(\dfrac{\pi}{4}+x)\le\sqrt2$$
    $$\therefore -\sqrt2\le\cos x+\sin x\le\sqrt2$$
    $$max(\cos x + \sin x) = \sqrt {2}$$
    $$\therefore K > \sqrt {2}$$
  • Question 5
    1 / -0
    The function $$f(x)=\cfrac { \sin { x }  }{ x } $$ is decreasing in the interval
    Solution
    $$f(x)=\cfrac { \sin { x }  }{ x } $$
    Let $$f'(x)=\cfrac { x\cos { x } -\sin { x }  }{ { x }^{ 2 } } $$
    Let $$g(x)=x\cos { x } -\sin { x } $$
    $$\quad \quad  \quad =\cos { x(x-\tan { x) }  } $$
    where $$\cos x>0$$
    $$\quad \quad x-\tan { x } <0$$
    $$\Rightarrow g(x)<0$$
    $$\Rightarrow f'(x)<0$$
    $$\therefore f(n)$$ is a decreasing function in $$\left( 0,\cfrac { \pi  }{ 2 }  \right) $$
  • Question 6
    1 / -0
    Consider the curve $$y = e^{2x}$$.Where does the tangent to the curve at (0, 1) meet the x-axis ? 
    Solution
    Slope of tangent at any point to the curve is given by $$\left|{ \cfrac { df\left( x \right)  }{ dx }  }\right|_{ ({ x }_{ 0 }, { y }_{ 0 }) }$$
    Here $$f(x)=y={e}^{2x}$$
    $$\Rightarrow \cfrac{dy}{dx}=2{e}^{2x}$$
    At point $$(0,1)$$
    $$\cfrac{dy}{dx}=2{e}^{2(0)}$$
    $$\cfrac{dy}{dx}=2$$
    Equation of tangent is at point $$({x}_{0},{y}_{0})$$
    $$y-{y}_{0}=m(x-{x}_{0})$$
    So, tangent at (0,1) is
    $$y-1=2(x-0)$$
    $$\therefore y=2x+1$$
    When this tangent meets x-axis, $$y$$ co-ordinate becomes zero
    Putting $$y$$ in above equation as zero, we get
    $$0=2x+1$$
    $$\Rightarrow x=\cfrac{-1}{2}$$
    Thus, the tangent to the curve meets at $$\left(-\dfrac{1}{2},0\right)$$
  • Question 7
    1 / -0
    The approximate value of $$f(x)={ x }^{ 3 }+5{ x }^{ 2 }-7x+9=0$$ at $$x=1.1$$ is
    Solution
    Given, $$f(x)={ x }^{ 3 }+5{ x }^{ 2 }-7x+9=0$$
    Let $$x=1$$ and $$\Delta x=0.1$$
    Approximate of a function $$f(x+\Delta x)\approx f(x)+f'(x)\Delta x$$
    $$ =f(1)+f'(1)\Delta x$$
    $$ =8+0.6=8.6 $$
  • Question 8
    1 / -0
    The equation to the normal to the hyperbola $$\dfrac {x^{2}}{16} - \dfrac {y^{2}}{9} = 1$$ at $$(-4, 0)$$ is.
    Solution
    $$\dfrac { { x }^{ 2 } }{ 16 } -\dfrac { { y }^{ 2 } }{ 9 } =1$$
    Differentiating above equation, we get
    $$ \dfrac { { 2x } }{ 16 } -\dfrac { 2{ y } }{ 9 } .\dfrac { dy }{ dx } =0$$ 
    $$\implies \dfrac{dy}{dx}=\dfrac{9x}{16y}$$ 
    $$\implies m=\left|\dfrac { dy }{ dx }\right|_{(-4,0)} =\dfrac{9(-4)}{ 16(0)} =\infty$$ is the slope of tangent
    Slope of the normal is $$-\dfrac{1}{m} =0$$
    Slope of the normal is zero so it is parallel to $$y$$-axis.
    Equation of normal is $$y-0=0(x-(-4))$$
    $$\therefore y=0$$ is the equation of normal.
  • Question 9
    1 / -0
    Let $$f(x)=2{ x }^{ 3 }-5{ x }^{ 2 }-4x+3,\cfrac { 1 }{ 2 } \le x\le 3$$. The point at which the tangent to the curve is parallel to the X-axis is
    Solution
    Given, $$f(x)=2{ x }^{ 3 }-5{ x }^{ 2 }-4x+3$$

    $$f'(x)=6{x}^{2}-10x-4$$

    If tangent is parallel to X-axis, then $$\cfrac { dy }{ dx } =0\quad $$

    $$\Rightarrow 6{ x }^{ 2 }-10x-4=0\quad $$

    $$\Rightarrow x=\cfrac { 5\pm \sqrt { 25+24 }  }{ 6 } =\cfrac { 5\pm 7 }{ 6 } $$

    $$\Rightarrow x=2,\cfrac { -1 }{ 3 } $$

    $$\quad \therefore y=f(x)=2{ (2) }^{ 3 }-5{ (2) }^{ 2 }-4(2)+3=-9$$
  • Question 10
    1 / -0
    The equation of the tangent to the curve $$y={ x }^{ 3 }-6x+5$$ at $$(2,1)$$ is
    Solution
    The equation of the curve
    $$y={ x }^{ 3 }-6x+5$$
    $$\Rightarrow \cfrac { dy }{ dx } =3{ x }^{ 2 }-6$$
    $$\Rightarrow { \left( \cfrac { dy }{ dx }  \right)  }_{ 2,1 }=6$$
    Now, equation of the tangent at $$(2,1)$$ is
    $$(y-1)=6(x-2)$$
    $$\Rightarrow  6x-y-11=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now