Self Studies

Application of Derivatives Test - 37

Result Self Studies

Application of Derivatives Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The point on the curve $$y = \sqrt {x - 1}$$ where the tangent is perpendicular to the line $$2x + y - 5 = 0$$ is
    Solution
    $$\dfrac {dy}{dx} = \dfrac {1}{2\sqrt {x - 1}} = m_{1}$$ is the slope of tangent to $$y=\sqrt{x-1}$$
    Slope of the line $$2x + y - 5 = 0$$ is $$m_{2} = -2$$
    For lines are perpendicular
    $$m_{1} m_{2} = -1$$ 
    $$\implies \left (\dfrac {1}{2\sqrt {x - 1}}\right )(-2) = -1$$
    $$\implies \dfrac {2}{2\sqrt {x - 1}} = 1$$
    $$\implies \sqrt {x - 1} = 1$$
    Squaring both sides, 
    $$\implies x - 1 = 1$$
    $$\implies x = 2$$
    $$\therefore y = \sqrt {x - 1}$$
    $$= \sqrt {2 - 1}$$
    $$= \sqrt {1}$$
    $$\therefore y = 1$$
    $$\therefore (2, 1)$$ is the point on the curve $$y=\sqrt{x-1}$$
  • Question 2
    1 / -0
    The slope of the normal to the curve $$x=1-a\sin { \theta  } $$, $$y=b\cos ^{ 2 }{ \theta  }$$ at $$ \theta =\dfrac { \pi  }{ 2 } $$ is
    Solution
    Given, $$x=1-a\sin { \theta  } $$ and $$y=b\cos ^{ 2 }{ \theta  }$$
    On differentiating with respect to $$\theta $$, we get
    $$\dfrac { dx }{ d\theta  } =-a\cos { \theta  }$$ 
    and $$ \dfrac { dy }{ d\theta  } =2b\cos { \theta  } \left( -\sin { \theta  }  \right)$$
    Then, $$ \dfrac { dy }{ dx } =\dfrac { { dy }/{ d\theta  } }{ { dx }/{ d\theta  } } =\dfrac { 2b }{ a } \sin { \theta  }$$
    $$ \therefore$$ Slope of normal at the point $$ \theta =\dfrac { \pi  }{ 2 }$$ is 
    $$ -\dfrac { dx }{ dy } =-\dfrac { 1 }{ { dy }/{ dx } } $$
           $$=-\dfrac { 1 }{ \dfrac { 2b }{ a } \sin { \left( \dfrac { \pi  }{ 2 }  \right)  }  } =-\dfrac { a }{ 2b } $$
  • Question 3
    1 / -0
    If an edge of a cube measure $$2$$ m with a possible error of $$0.5$$ cm. Find the corresponding error in the calculated volume of the cube.
    Solution
    Let $$x$$ be the length of an edge of a cube and $$V$$ be the volume of that cube.
    Thus $$ V = x^{3}$$
    On differentiating w.r.t. $$x$$, we get
    $$\dfrac {dV}{dx} = 3x^{2}$$
    Let $$\delta V$$ be error in $$V$$ and corresponding error $$\delta x$$ in $$x$$.
    $$\therefore \delta V = \dfrac {dV}{dx} \delta x = 3x^{2} \delta x$$
    Given that, $$x = 2$$ m and $$\delta x = 0.5$$ cm $$= \dfrac {0.5}{100} $$ m
    $$\therefore \delta V = 3(2)^{2} \left (\dfrac {0.5}{100}\right )$$
    $$= \dfrac {12\times 0.5}{100} = \dfrac {6}{100} = 0.06\ cm^{3}$$
  • Question 4
    1 / -0
    The tangents to curve $$y={ x }^{ 3 }-2{ x }^{ 2 }+x-2$$ which are parallel to straight line $$y=x$$, are
    Solution
    Given,
    $$y={ x }^{ 3 }-2{ x }^{ 2 }+x-2$$

    On differentiating both sides with respect to $$x$$, we get

    $$\dfrac { dy }{ dx } =3{ x }^{ 2 }-4x+1$$

    and $$y=x$$

    $$\Rightarrow \dfrac { dy }{ dx } =1$$

    $$\therefore$$ Slope of tangent will be $$ 3{ x }^{ 2 }-4x+1$$.

    Since, the tangent is parallel to line $$y=x$$.

    $$\therefore 3{ x }^{ 2 }-4x+1=1$$

    $$\Rightarrow 3{ x }^{ 2 }-4x=0$$

    $$\Rightarrow x\left( 3x-4 \right) =0$$

    $$\Rightarrow x=0,\dfrac { 4 }{ 3 }$$

    When $$x=0$$, then $$y=-2$$

    When $$x=\dfrac { 4 }{ 3 } $$, then $$y=\dfrac { -50 }{ 27 }$$

    Now, equation of tangents at point $$ \left( 0,-2 \right)$$ is

    $$ y-{ y }_{ 1 }=\dfrac { dy }{ dx } \left( x-{ x }_{ 1 } \right)$$

    $$ \Rightarrow y+2=1\left( x-0 \right)$$

    $$ \Rightarrow y+2=x$$

    $$\Rightarrow x-y=2$$              ...(i)

    and equation of tangents at point $$\left( \dfrac { 4 }{ 3 } ,-\dfrac { 50 }{ 27 }  \right) $$ is

    $$y-{ y }_{ 1 }=\dfrac { dy }{ dx } \left( x-{ x }_{ 1 } \right) $$

    $$y+\dfrac { 50 }{ 27 } =x-\dfrac { 4 }{ 3 }$$

    $$ \Rightarrow x-y=\dfrac { 50 }{ 27 } +\dfrac { 4 }{ 3 }$$

    $$ \Rightarrow x-y=\dfrac { 50+36 }{ 27 } $$

    $$\Rightarrow x-y=\dfrac { 86 }{ 27 } $$              ....(ii)

    Hence, equations (i) and (ii) are required equations of the tangents.
  • Question 5
    1 / -0
    The slope of tangent to the curve $$ x=t^2 + 3t - 8, y = 2t^2 - 2t - 5 $$ at the point $$(2, -1)$$ is :
    Solution
    Given curves are $$ x=t^{2} + 3t - 8$$ ... $$(i)$$ and $$y = 2t^{2} - 2t - 5 $$ ... $$(ii)$$
    At $$(2,-1),$$ From $$(i)$$
    $$t^{2}+3t-10=0\implies t=2$$ or $$t=-5$$
    From $$(ii)$$
    $$2t^{2}-2t-4=0\implies t^{2}-t-2=0\implies t=2$$ or $$t=-1$$
    From both the solutions, we get $$t=2$$

    Differentiating both the equations w.r.t. $$t$$, we get
    $$\dfrac{dx}{dt}=2t+3$$ ........ $$(iii)$$
    $$\dfrac{dy}{dt}=4t-2$$ ....... $$(iv)$$

    Now, $$ \dfrac{dy}{dx} = \dfrac {\dfrac{dy}{dt}}{\dfrac{dx}{dt}}$$

    $$ = \dfrac {4t-2}{2t+3}$$ .... From $$(iii)$$ and $$(iv)$$
    $$\therefore \dfrac{dy}{dx} = \dfrac {4t-2}{2t+3}$$ is the slope of tangent to the given curve
    $$\therefore \left|\dfrac{dy}{dx}\right|_{(2,-1)} = \left|\dfrac {4t-2}{2t+3}\right|_{t=2}=\dfrac{8-2}{4+3}=\dfrac{6}{7}$$ is the slope  of tangent to the given curve at $$(2,-1)$$
  • Question 6
    1 / -0
    The points at which the tangent to the curve $$y = x^3 - 3x^2 - 9x + 7$$ is parallel to the x-axis are 
    Solution
    Tangent to the curve is parallel to the axis is when slope of the tangent is 0. 
    $$\therefore$$ Equation of the curve is
    $$y=x^3-3x^2-9x+7=0$$ ...... $$(i)$$
    $$\therefore \dfrac{dy}{dx}=3x^2-6x-9$$

    Now, the tangent is parallel to x-axis, then slope of the tangent is zero or we can say that $$\dfrac{dy}{dx}=0$$.

    $$\Rightarrow 3x^2-6x-9=0$$
    $$\Rightarrow 3(x^2-2x-3)=0$$
    $$\Rightarrow (x-3)(x+1)=0$$
    $$\Rightarrow x=3, -1$$

    When $$x=3$$, then from Eq. $$(i),$$ we get
    $$y=(3)^3-(3)\cdot (3)^2-9\cdot 3+7$$
    $$=27-27-27+7=-20$$

    When $$x =-1,$$ then from Eq. $$(i),$$ we get
    $$y=(-1)^3-3(-1)^2-9(-1)+7$$
    $$=-1-3+9+7=12$$
    Hence, the points at which the tangent is parallel to x-axis are $$(3, -20)$$ and $$(-1, 12)$$.
  • Question 7
    1 / -0
    If $$y=8{ x }^{ 3 }-60{ x }^{ 2 }+144x+27$$ is a strictly decreasing function in the interval
    Solution
    Given, $$y=8{ x }^{ 3 }-60{ x }^{ 2 }+144x+27$$

    $$\cfrac { dy }{ dx } =24{ x }^{ 2 }-120x+144\quad $$

    For function to be strictly decreasing

    $$\cfrac { dy }{ dx } <0$$

    $$\Rightarrow 24{ x }^{ 2 }-120x+144<0$$

    $$\Rightarrow \left( { x }^{ 2 }-5x+6 \right) <0$$

    $$\Rightarrow \left( { x }^{ 2 }-2x-3x+6 \right) <0$$

    $$\Rightarrow (x-3)(x-2)<0$$

    $$\therefore x\in (2,3)$$
  • Question 8
    1 / -0
    If the tangent at $$(1,1)$$ on $${ y }^{ 2 }=x{ (2-x) }^{ 2 }$$ meets the curve again at $$P$$, then $$P$$ is
    Solution
    We have
    $$\Rightarrow { y }^{ 2 }={ x }^{ 3 }-4{ x }^{ 2 }+4x$$    .....(i)

    $$\Rightarrow 2y\cfrac { dy }{ dx } =3{ x }^{ 2 }-8x+4$$

    $$\Rightarrow \cfrac { dy }{ dx } =\cfrac { 3{ x }^{ 2 }-8x+4 }{ 2y } $$

    $$\Rightarrow { \left[ \cfrac { dy }{ dx }  \right]  }_{ (1,1) }=\cfrac { 3-8+4 }{ 2 } =-\cfrac { 1 }{ 2 } $$

    The equation of the tangent at $$(1,1)$$ is

    $$-1=-\cfrac { 1 }{ 2 } (x-1)$$

    $$\Rightarrow x+2y-3=0$$    .....(ii)

    On solving Eqs. (i) and (ii) we get

    $$x=9/4$$ and $$y=3/8$$

    Hence,the coordinates of $$P$$ are $$\left( \cfrac { 9 }{ 4 } ,\cfrac { 3 }{ 8 }  \right) $$.
  • Question 9
    1 / -0
    The tangent to the curve $$y=a{ x }^{ 2 }+bx$$ at $$\left( 2,-8 \right) $$ is parallel to $$X$$-axis. Then,
    Solution
    Given, $$y=a{ x }^{ 2 }+bx$$
    On differentiating with respect to $$x$$, we get
    $$\dfrac { dy }{ dx } =2ax+b$$
    At $$\left( 2,-8 \right) ,$$  $${ \left( \dfrac { dy }{ dx }  \right)  }_{ \left( 2,-8 \right)  }=4a+b$$
    Since tangent is parallel to $$X$$-axis.
    Thus $$ \dfrac { dy }{ dx } =0\Rightarrow b=-4a$$             ....(i)
    Now, point $$\left( 2,-8 \right)$$ is on the curve $$ y=a{ x }^{ 2 }+bx$$
    Therefore, $$ -8=4a+2b$$            ....(ii)
    On solving equations (i) and (ii), we get
    $$a=2,b=-8$$
  • Question 10
    1 / -0
    Find the critical points of the function $$f (x)= (x - 2)^{2/3} (2x + 1)$$ 
    Solution
    We have,$$f(x)=(x-2)^{2/3}(2x+1)$$

    $$\Rightarrow f'(x)=\frac {2}{3}(x-2)^{-1/3}(2x+1)+(x-2)^{2/3}\cdot 2$$

    $$=\dfrac {2(2x+1)}{3(x-2)^{1/3}}+2 (x-2)^{2/3}$$

    $$= \dfrac {2(2x+1)+6(x-2)}{3(x-2)^{1/3}}$$

    $$=\dfrac {4x+2+6x-12}{3(x-2)^{1/3}}$$

    $$=\dfrac {10(x-1)}{3(x-2)^{1/3}}$$

    For critical points,

    $$f'(x)=0$$

    $$\Rightarrow x=1$$

    and $$f'(x)$$ is not defined at x= 2.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now