Self Studies

Application of Derivatives Test - 38

Result Self Studies

Application of Derivatives Test - 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the straight line $$ y -2x +1=0$$ is the tangent to the curve $$xy+ax+by=0$$ at $$x=1, $$ then the values of $$a$$ and $$b$$ are respectively :
    Solution

    Equation of tangent is $$y-2x+1=0$$

    It is tangent at $$x=1$$, so for $$x=1$$

    $$y-2(1)+1=0\\ \Rightarrow y=1$$

    So, its is tangent to the curve at $$(1,1)$$

    Slope of tangent $$= -\left (\dfrac{-2}{1}\right)=2$$

    $$xy+ax+by=0\\ y+x\dfrac { dy }{ dx } +a+b\dfrac { dy }{ dx } =0$$

    Now $$\dfrac { dy }{ dx } =2$$ at $$(1,1)$$

    $$1+1(2)+a+b(2)=0\\ \Rightarrow a+2b=-3$$     .....(i)

    $$(1,1)$$ also lies on the curve $$xy+ax+by=0$$

    $$\Rightarrow 1(1)+a(1)+b(1)=0\\ \Rightarrow a+b=-1$$     .......(ii)

    Solving (i) and (ii), we get

    $$\Rightarrow a=1,b=-2$$

    So, option E is correct.

  • Question 2
    1 / -0
    The point on the curve $$y = 5 + x - x^{2}$$ at which the normal makes equal intercepts is
    Solution
    Given curve is
    $$y = 5 + x - x^{2}$$     ..... (i)
    On differentiating w.r.t. $$x$$, we get
    $$\dfrac {dy}{dx} = 1 - 2x$$
    Slope of normal $$= \dfrac {-1}{(dy/dx)} = \dfrac {-1}{1 - 2x}$$
    $$= \dfrac {1}{2x - 1}$$     .... (ii)
    Since, normal makes equal intercepts.
    $$\therefore \theta = 135^{\circ}$$
    From Eq. (ii), we have
    $$\dfrac {1}{2x - 1} = \tan 135^{\circ} = -1$$
    $$\Rightarrow -2x + 1 = 1\Rightarrow x = 0$$
    Then, from Eq. (i), $$y = 5$$
    So, the required point is $$(0, 5)$$.
  • Question 3
    1 / -0
    If the angle between the curves $$ y = 2^x $$ and $$ y=3^x $$ is $$ \alpha, $$ then the value of $$ \tan \alpha $$ is equal to :
    Solution
    Given curves are $$ y = 2^x $$ and $$ y =3^x $$
    The point of intersection is $$ 3^x = 2^x \Rightarrow x = 0 $$
    On differentiating w.r.t. $$x,$$ we get 
    $$ \dfrac {dy}{dx} = 2^x \log 2 = m_1 $$
    and $$ \dfrac {dy}{dx} = 3^x \log 3 = m_2 $$
    Therefore, $$  \tan \alpha = \dfrac {m_2 - m_1}{1 + m_1m_2} $$
    $$ = \dfrac {3^x \log 3 - 2^x \log 2 }{1+3^x \times 2^x \log 3 \times \log 2} $$
    At $$x=0$$, 
    $$\tan \alpha = \dfrac {3^0 \log 3 - 2^0 \log 2 }{1 + 3^0 \times 2^0 \log 2 \log 3 } $$
    $$ = \dfrac { \log \dfrac {3}{2} } { 1 + \log 2 \log 3 } $$
  • Question 4
    1 / -0
    The equation of the tangent to the curve $$\sqrt {\dfrac {x}{a}} + \sqrt {\dfrac {y}{b}} = 1$$ at the point $$(x_{1}, y_{1})$$ is $$\dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = k$$. Then, the value of $$k$$ is
    Solution
    Given curve is
    $$\sqrt {\dfrac {x}{a}} + \sqrt {\dfrac {y}{b}} = 1 $$    ... (i)
    On differentiating w.r.t. to $$x$$, we get
    $$\dfrac {1}{\sqrt {a}} \cdot \dfrac {1}{2\sqrt {x}} + \dfrac {1}{\sqrt {b}} \cdot \dfrac {1}{2\sqrt {y}} \dfrac {dy}{dx} = 0$$
    $$\Rightarrow \dfrac {dy}{dx} = -\dfrac {\sqrt {b}\sqrt {y}}{\sqrt {a}\sqrt {x}} \Rightarrow \left [\dfrac {dy}{dx}\right ]_{(x_{1}, y_{1})} = \dfrac {-\sqrt {b}\sqrt {y_{1}}}{\sqrt {a}\sqrt {x_{1}}}$$
    Equation of tangent passing through the point $$(x_{1}, y_{1})$$ is
    $$(y - y_{1}) = \dfrac {-\sqrt {b}\sqrt {y_{1}}}{\sqrt {a}\sqrt {x_{1}}} (x - x_{1})$$
    $$\dfrac {y}{\sqrt {by_{1}}} - \dfrac {y_{1}}{\sqrt {by_{1}}} = -\dfrac {x}{\sqrt {ax_{1}}} + \dfrac {x_{1}}{\sqrt {ax_{1}}}$$
    $$\Rightarrow \dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = \dfrac {x_{1}}{\sqrt {ax_{1}}} + \dfrac {y_{1}}{\sqrt {by_{1}}} = \sqrt {\dfrac {x_{1}}{a}} + \sqrt {\dfrac {y_{1}}{b}}$$
    $$\Rightarrow \dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = 1$$ [from Eq. (i)]
    $$\left [\because at (x_{1}, y_{1}), \sqrt {\dfrac {x_{1}}{a}} + \sqrt {\dfrac {y_{1}}{b}} = 1\right ]$$
    But $$\dfrac {x}{\sqrt {ax_{1}}} + \dfrac {y}{\sqrt {by_{1}}} = k$$ (given)
    Therefore, $$k = 1$$
  • Question 5
    1 / -0
    The slope of the normal to the curve $$y = x^2 - \dfrac{1}{x^2}$$ at $$(-1, 0) $$ is 
    Solution
    Given curve is $$y = x^2 - \dfrac{1}{x^2}$$
    On differentiating both sides w.r.t. $$x$$, we get
    $$\dfrac{dy}{dx} = 2x + \dfrac{2}{x^3}$$
    At point $$(-1, 0)$$.
    $$\dfrac{dy}{dx} = 2(-1) + \dfrac{2}{(-1)^3} = -4$$
    Therefore, slope of normal to the curve
    $$= - \dfrac{1}{dy/dx}$$
    $$= - \dfrac{1}{-4} = \dfrac{1}{4}$$
  • Question 6
    1 / -0
    The slope of the tangent to the curve $$y=3{ x }^{ 2 }-5x+6$$ at $$\left( 1,4 \right) $$ is
    Solution
    Given curve is
    $$y=3{ x }^{ 2 }-5x+6\Rightarrow \dfrac { dy }{ dx } =6x-5$$
    $$\therefore $$ Slope of tangent at 
    $$\left( 1,4 \right) =6\times 1-5=1$$
  • Question 7
    1 / -0
    The function $$f(x) = 2x^3 - 15 x^2 + 36 x + 6$$ is strictly decreasing in the interval
    Solution
    $$f(x)=2x^3-15x^2+36x+6$$
    $$f'(x)=6x^2-30x+36$$
    $$f'(x)=0$$
    $$6x^2-30x+36=0$$
    $$\Rightarrow x^2-5x+6=0$$
    $$\Rightarrow (x-2)(x-3)=0$$
    $$\Rightarrow x=2$$ or $$x=3$$
    Since, from figure in interval  $$(2,3)$$ is negative it means $$f(x)$$ is strictly decreasing in this interval.
    Hence, A is the correct option.

  • Question 8
    1 / -0
    A normal to parabola, whose inclination is $$30^o$$, cuts it again at an angle of.
    Solution

    Equation of normal in terms of parameter
    To parabola $$y^2=4ax$$ at $$(at^2, 2at)$$, the equation of normal is $$y=-tx+2at+at^3$$
    To parabola $$x^2=4ay$$ at $$(2at, at^2)$$ the equation of normal is $$x+ty=2at+at^3$$

    Let the normal $$P(at_1,2at_1)$$ by $$y= -t_1x + 2at_1+at_1^3$$
    $$\theta$$ $$=-t_1=$$ slope of normal
    It meets the curve at $$\theta$$ say $$(at_2^2,2at_2)$$
    Now angle between the normal and parabola $$=$$ Angle the normal and tangent at $$\theta$$ (i.e)  $$t_2= x + at_2^2$$

    $$\tan \phi$$ =$$\dfrac{m_1-m_2}{1+m_1m_2}$$
          
    $$=\dfrac{-t_1-\dfrac{1}{t_2}}{1+\dfrac{(-t_1)}{(-t_2)}}$$

    $$=\dfrac{-(t_1t_2+1)}{t_2-t_1}$$

    $$=\dfrac{-(t_1^2+1)}{t_2-t_1}$$

    $$=\dfrac{-(-t_1^2-1)}{\dfrac{-2(1+t_1^2)}{(t_1)}}$$
    $$=\dfrac{-t_1}{2}$$

    $${\tan}\phi=\dfrac{\tan\theta}{2}$$
    hence,
    $$\phi$$=$$\tan^{-1}\dfrac{\tan30^.}{2} = \tan^{-1}(\dfrac{1}{2\times3^{\tfrac{1}{2}}})$$

  • Question 9
    1 / -0
    If the slope of the tangent to the curve $$y=a{ x }^{ 3 }+bx+4$$ at $$(2,14) = 21$$, then the values of $$a$$ and $$b$$ are respectively
    Solution
    $$(2,14)$$ lies on the curve $$y=ax^3+bx+4$$
    => $$8a+2b+4=14$$
    => $$4a+b=5$$----(1)

    $$\dfrac{dy}{dx}=3ax^2+b|_{x=2}=21$$
    => $$12a+b=21$$--(2)

    Solving equations (1) and (2), we get $$a=2, b=-3$$
  • Question 10
    1 / -0
    Let $$\quad f(x)+2f(1-x)={ x }^{ 2 }+2\forall x\in R\quad $$ then the interval in which $$f(x)$$ increases is
    Solution
    $$f(x)+2f(1-x)={ x }^{ 2 }+2...(i)$$
    $$\Rightarrow f(1-x)+2f(x)={ (1-x) }^{ 2 }+2...(ii)$$
    replacing $$x\rightarrow 1-x\quad $$
    multiplying (ii) by $$2$$ then subtracting (1) we get
    $$3f(x)={ x }^{ 2 }-4x+4={ (x-2) }$$
    $$\Rightarrow f(x)=\cfrac { { (x-2) }^{ 2 } }{ 3 } $$
    differentiating w.r.to $$x$$ both sides we get
    $$f'(x)=\cfrac { 2(x-2) }{ 3 } >0\forall \left( 2,\infty  \right) $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now