Self Studies

Application of Derivatives Test - 39

Result Self Studies

Application of Derivatives Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The angle between the curves $$x^{2} + y^{2} = 25$$ and $$x^{2} + y^{2} - 2x + 3y - 43 = 0$$ at $$(-3, 4)$$ is
    Solution
    slope of first curve at $$(-3,4)$$
    $$m_1 = dy/dx = \dfrac{-x}{y} = \dfrac{3}{4}$$

    slope of second curve at $$(-3,4)$$
    $$m_2 = \dfrac{-2x+2}{2y+3} = \dfrac{8}{11}$$

    angle between them $$= tan^{-1} \dfrac{m_1 - m_2}{1+m_1 +m_2}$$
    $$=tan^{-1} \dfrac{1/44}{17/11} =tan^{-1} \dfrac{1}{68}$$
  • Question 2
    1 / -0
    If the tangent at each point of the curve $$y=\cfrac { 2 }{ 3 } { x }^{ 3 }-2a{ x }^{ 2 }+2x+5$$ makes an acute angle with positive direction of X-axis then
    Solution
    On differentiating, We get 
    $$\dfrac{dy}{dx}=2x^2-4ax+2$$
    If Tangent makes acute angle with +ve x axis, then 
    $$\dfrac{dy}{dx}\ge0$$ For all x
    $$x^2-2ax+1\ge0\\ \Rightarrow 4a^2-4\le0\Rightarrow a^2\le1\\ -1\le a\le1$$
  • Question 3
    1 / -0
    The slope of the tangent at each point of the curve is equal to the sum of the coordinate of the point. Then, the curve that passes through the origin is
    Solution
    Given, $$\dfrac {dy}{dx}=x+y\Rightarrow dy=xdx+ydx\Rightarrow dy+dx=xdx+ydx+dx$$

    So, $$d(x+y)=(x+y+1)dx\Rightarrow dx=\dfrac {d(x+y+1)}{x+y+1}$$
    Integrating on both sides,
    $$x=\ln(x+y+1)$$
    On taking antilog,
    $$e^x=x+y+1$$
    Or. $$e^x-1=x+y$$
    So, Option A is correct answer.
  • Question 4
    1 / -0
    If $$g\left( x \right) =2f\left( 2{ x }^{ 3 }-3{ x }^{ 2 } \right) +f\left( 6{ x }^{ 2 }-4{ x }^{ 3 }-3 \right)$$ $$\forall \ x\ \in \ R$$ and $$f^{''}\left( x \right) > 0$$, $$\forall \ x \in \ R$$, then $$g\left ( x \right)$$ is increasing in the interval
    Solution

  • Question 5
    1 / -0
    The slope of the tangent at the point $$(h, h)$$ of the circle $$x^{2} + y^{2} = a^{2}$$ is :
    Solution
    Slope of the tangent for the cicle $$x^{2}+y^{2}=a^{2}$$ can be calculated by differentiating the circle's equation.
    On differentiating w.r.t x, $$2x + 2y\dfrac{dy}{dx}=0$$
    Slope $$m$$$$=\space \dfrac{dy}{dx}=-\dfrac{x}{y}$$
    Point given is $$(h,h)$$
    Putting point in the slope equation $$m=\dfrac{dy}{dx}=-\dfrac{h}{h}$$
    Slope $$m=-1$$
    Hence, $$(C)$$
  • Question 6
    1 / -0
    The angle at which the curve $$y={ x }^{ 2 }$$ and the curve $$x=\cfrac { 5 }{ 3 } \cos { t } ,y=\cfrac { 5 }{ 4 } \sin { t } $$ intersect is
    Solution
    Given
    $$y={ x }^{ 2 }...(i)$$
    $$\quad x=\cfrac { 5 }{ 3 } \cos { t } ;y=\cfrac { 5 }{ 4 } \sin { t } ...(ii)$$
    Which is parametric equation, we change this equation is caresian equation as follows
    $$\cos { t } =\cfrac { 3 }{ 5 } x;\sin { t } =\cfrac { 4 }{ 5 } y$$
    On Squaring and adding both i.e., $$\cos{t}$$ and $$\sin {t}$$ we get
    $$\cfrac { 9 }{ 25 } { x }^{ 2 }+\cfrac { 16 }{ 25 } { y }^{ 2 }=\cos ^{ 2 }{ t } +\sin ^{ 2 }{ t } $$
    $$\Rightarrow 9{ x }^{ 2 }+16{ y }^{ 2 }=25....(iii)\quad \quad \left[ \because \cos ^{ 2 }{ \theta  } +\sin ^{ 2 }{ \theta  } =1 \right] $$
    $$\therefore$$ The intersection points at Eq.(i) and (iii) are $$(1,1)$$ and $$(-1,1)$$
    Now, slope of tangent of Eq.(i) at point $$(1,1)$$ is
    $${ m }_{ 1 }=\cfrac { dy }{ dx } =2x\quad \therefore { m }_{ 1 }={ \left| \cfrac { dy }{ dx }  \right|  }_{ (1,1) }=2$$
    And slope of tangent of Eq. (iii) at point $$(1,1)$$ is
    $${ m }_{ 2 }=\cfrac { dy }{ dx } =-\cfrac { 9 }{ 16 } $$
    $$\therefore$$ Angle at point of intersection of Eqs. (i) and (iii) we get
    $${ \theta  }_{ 1 }=\tan ^{ -1 }{ \left| \cfrac { { m }_{ 1 }-{ m }_{ 2 } }{ 1+{ m }_{ 1 }{ m }_{ 2 } }  \right|  } =\tan ^{ -1 }{ \cfrac { 41 }{ 2 }  } $$
    similarly, slope of tangent of Eq. (i) at point $$(-1,1)$$
    $${ m }_{ 1 }={ \left| \cfrac { dy }{ dx }  \right|  }_{ (-1,1) }=-2$$
    And slope of tangent of Eq. (iii) at point $$(-1,1)$$
    $${ m }_{ 2 }=\cfrac { dy }{ dx } =\cfrac { 9 }{ 16 } $$
    $$\therefore$$ Angle at point of intersection of Eqs. (i) and (iii) we get
    $${ \theta  }_{ 2 }=\tan ^{ -1 }{ \left| \cfrac {-2- \cfrac { 9 }{ 16 }  }{ 1-\cfrac { 18 }{ 16 }  }  \right|  } =\tan ^{ -1 }{ \cfrac { 41 }{ 2 }  } \quad \quad $$
  • Question 7
    1 / -0
    The slope of the tangent to the curve $$y=\int _{ 0 }^{ x }{ \frac { dt }{ 1+{ t }^{ 3 } }  } $$ at the point where $$x=1$$ is
    Solution
    $$\frac { dy }{ dx } =\frac { 1 }{ 1+{ x }^{ 3 } } $$
    $$m=\left( \frac { dy }{ dx }  \right) x=1=\frac { 1 }{ 1+1 } =\frac { 1 }{ 2 } $$
  • Question 8
    1 / -0
    The equation of the curve satisfying the differential equation $$y_{2}(x^{2} + 1) = 2xy_{1}$$ passing through the point $$(0, 1)$$ and having slope of tangent at $$x = 0$$ as $$3$$ is
    Solution
    Given $$\cfrac { { d }^{ 2 }y }{ d{ x }^{ 2 } } \left( { x }^{ 2 }+1 \right) =2x\cfrac { dy }{ dx } $$
    $$y={ x }^{ 2 }+3x+1$$
    Slope, $${ \left( \cfrac { dy }{ dx }  \right)  }_{ x=0 }={ (2x+3) }_{ x=0 }\Rightarrow 2\times 0+3\Rightarrow 3$$
    At point $$x=0$$
    $$y={ (0) }^{ 2 }+3\times 0+1$$
    Thus this curve passes through point $$(0,1)$$ and have slope of tangent at $$x=0$$ as $$3$$
    $$y={ x }^{ 2 }+3x+1$$ is the answer
  • Question 9
    1 / -0
    The area of the triangle formed by the positive x-axis, the tangent and normal to the curve $${ x }^{ 2 }+{ y }^{ 2 }=16{ a }^{ 2 }$$ at the point $$\left( 2\sqrt { 2 } a,2\sqrt { 2 } a \right) $$ is
    Solution
    Point on the curve is $$(2\sqrt{2}a,2\sqrt{2}a)$$

    Equation of tangent at this point is $$x_1x+y_1y=16a^2$$

    here $$x_1 = 2\sqrt{2}a$$   and   $$y_1=2\sqrt{2}a$$

    $$Area = \dfrac{1}{2} \times{base}\times{height}$$

    Point of intersection of tangent to the x axis is $$\dfrac{16a^2}{2\sqrt{2}a}$$
    So,
    Base = $$4\sqrt{2}a$$

    Height =$$2\sqrt{2}a $$

    $$Area = \dfrac{1}{2}\times{4\sqrt{2}a}\times{2\sqrt{2}a}$$

    $$Area = 8a^2$$
  • Question 10
    1 / -0
    A tangent PT is drawn to the circle $$x^2+y^2=4$$ at the point $$P(\sqrt{3}, 1)$$. A straight line L, perpendicular to PT is a tangent to the circle $$(x-3)^2+y^2=1$$. $$(1)$$ A possible equation of L is?
    Solution
    Slope of tangent to $$x^{2}+y^{2}=4$$ at $$P(\sqrt{3},1)$$ is given by differentiating given equation w.r.t. x
    $$\dfrac{dy}{dx}=\dfrac{-x}{y}=-\sqrt{3}$$
    So slope of line L $$=\dfrac{-1}{-\sqrt{3}}=\dfrac{1}{\sqrt{3}}$$
    Let equation of L be $$x-\sqrt3y+c=0$$
    As L is tangent to $$(x-3)^{2}+y^{2}=1$$
    So perpendicular distance of L from its center should be equal to its radius i.e. $$1$$.
    Centre $$(3,0)$$
    $$\dfrac{|3+c|}{\sqrt4}=1$$
    $$\Rightarrow c=-1 or -5$$
    So equation of L is $$x-\sqrt3y=1$$
    or
     $$x-\sqrt3y=5$$
    Hence option A is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now