Self Studies

Application of Derivatives Test - 40

Result Self Studies

Application of Derivatives Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The points of the curve $$y={ x }^{ 3 }+x-2$$ at which its tangent are parallel to the straight line $$y=4x-1$$ are
    Solution
    Given
    $$y={ x }^{ 3 }+x-2...(i)$$

    $$y=4x-1....(ii)$$

    Slope of tangent to the curve (i)

    $$\cfrac { dy }{ dx } =3{ x }^{ 2 }+1$$

    slope of tangent at point $$\left( \alpha ,\beta  \right) $$ is

    $$\quad { \left| \cfrac { dy }{ dx }  \right|  }_{ \left( \alpha ,\beta  \right)  }^{  }=3{ \alpha  }^{ 2 }+1...(iii)$$

    Given, tangent of curve (i) is parallel to line (ii)

    $$\therefore$$ Slope of line (ii) is $$4$$

    $$\therefore$$ From Eq(iii) we get

    $$3{ \alpha  }^{ 2 }+1=4\Rightarrow \alpha =\pm 1$$

    $$\therefore \left( \alpha ,\beta  \right) $$ lie on curve (i)

    $$\beta ={ \left( \pm 1 \right)  }^{ 2 }+\left( \pm 1 \right) -2\Rightarrow \beta =0,-4\quad $$

    $$\therefore$$ Points are $$(1,0)$$ and $$(-1,-4)$$
  • Question 2
    1 / -0
    Consider the following statements:
    Statement I:
    $$x > \sin x$$ for all $$x > 0$$
    Statement II:
    $$f(x) = x - \sin x$$ is an increasing function for all $$x > 0$$
    Which one of the following is correct in respect of the above statements?
    Solution
    Assume $$f(x)=x-\sin x$$
    $$\therefore f'(x)=1-\cos x\geq 0$$ and hence, $$x-\sin x$$ is an increasing function and hence, $$x>\sin x$$
    So, both I and II are true and II is correct explanation for I.
  • Question 3
    1 / -0
    The critical points of the function $$f(x)={ x }^{ 3/5 }\left( 4-x \right) ,x\in { R }^{ + }\cup \left\{ 0 \right\} $$ is _______
    Solution
    $$f(x)={ x }^{ \cfrac { 3 }{ 5 }  }\left( 4-x \right) x\in { R }^{ + }$$
    $$f(x)=4{ x }^{ \cfrac { 3 }{ 5 }  }-{ x }^{ \cfrac { 8 }{ 5 }  }$$
    $$\therefore f'(x)=4\left( \cfrac { 3 }{ 5 }  \right) { x }^{ -\cfrac { 2 }{ 3 }  }=\cfrac { 8 }{ 5 } { x }^{ \cfrac { 3 }{ 5 }  }$$
    $$\therefore f'(x)=\cfrac { 4 }{ 5 } \left( \cfrac { 3 }{ { x }^{ \cfrac { 2 }{ 3 }  } } -2{ x }^{ \cfrac { 3 }{ 5 }  } \right) =\cfrac { 4 }{ 5 } \left( \cfrac { 3-2x }{ { x }^{ \cfrac { 2 }{ 3 }  } }  \right) \quad $$
    For $$x=0;f'(x)$$ does not exists and for $$x=\cfrac { 2 }{ 3 } $$ we have $$f'(x)=0$$
    $$\therefore$$ Critical points are $$0$$ and $$\cfrac{2}{3}$$
  • Question 4
    1 / -0
    A point P moves such that sum of the slopes of the normal drawn from it to the hyperbola $$xy=16$$ is equal to the sum of the ordinates of the feet of the normal. Let 'P' lies on the curve C, then.
    The equation of 'C' is?
    Solution
    Let P(h,k) be the point in the plane of hyperbola $$xy=16=4^2$$

    The equation of the normal at a point $$(4t, \dfrac {4} {t})$$ to the hyperbola $$xy=4^2$$ is

    $$xt^3-yt-4t^4+4=0$$

    if if passes through $$P(h,k)$$ then,

    $$ht^3-yt-4t^4+4=0$$

    $$ \Rightarrow 4t^4-ht^3+kt-4=0$$

    this is a fourth degree equation  in  t. So, it gives 4 values of t, $$t_1,t_2,t_3,t_4$$ corresponding to each value of t there is a point on hyperbola such that the normal passes through $$P(h,k)$$.

    let the 4 points be $$ A(ct_1, \dfrac{c}{t_1}) $$,$$ B(ct_2, \dfrac{c}{t_2}) $$,$$ C(ct_3, \dfrac{c}{t_3}) $$   and  $$ D(ct_4, \dfrac{c}{t_4}) $$

    such that normal at these points pass through $$P(h,k)$$.

    Since $$t_1,t_2,t_3,t_4$$ are roots of equation (1).

    Therefore,
    $$t_1+t_2+t_3+t_4 = \dfrac{h}{c}=\dfrac{h}{4}$$.......(2)

    $$ \sum t_1t_2 =0 $$.......(3)

    $$ \sum t_1t_2t_3 = - \dfrac{k}{4} $$.........(4)

    $$  t_1t_2t_3t_4 =-1 $$.......(5)

    It s given that the sum of the slopes of the normals at A,B,C and D is equal to the sum of the coordinates of these points.

    Therefore
    $$t_1^2+t_2^2+t_3^2+t_4^2 = \dfrac{c}{t_1}+\dfrac{c}{t_3}+\dfrac{c}{t_3}+\dfrac{c}{t_4}=\dfrac{4}{t_1}+\dfrac{4}{t_2}+\dfrac{4}{t_3}+\dfrac{4}{t_4}$$

    $$(t_1+t_2+t_3+t_4 )^2-2\sum t_1t_2=4\left ( \dfrac {\sum t_1t_2t_3}{t_1t_2t_3t_4} \right )$$

    $$\Rightarrow \dfrac{h^2}{4}-2\times 0 = 4 \times \left ( \dfrac{\dfrac {-k}{4}} {-1} \right ) $$

    $$\Rightarrow \dfrac{h^2}{4} = k $$

    $$\Rightarrow h^2 = 16k$$

    so the locus of $$(h,k)$$ is $$x^2=16y$$, which is a parabola
  • Question 5
    1 / -0
    $$f(x) = |x\log_{e}x|$$ monotonically decreases in
    Solution
    Monotomic functions are those functions who either increase or decrease over a given domain.
    Example: the function $$x^{3}$$ in an always increasing function.
    The given equation is:
    $$f(x) = |x\log_{e}x|$$
    Differentiating once w.r.t to $$x$$ we get,
    $$\Rightarrow f'(x) = \dfrac {|x\log_{e}x|}{x\log_{e}x}\times (\log_{e}x + 1)$$
    Now for $$0 < x < 1$$ we have
    $$\Rightarrow f'(x) = \dfrac {-x\log_{e}x}{x\log_{e}x} \times (\log_{e} x + 1)$$
    $$\Rightarrow f'(x) = -(\log_{e}x + 1)$$
    Now for monotonically decreasing function we have $$f'(x) < 0$$
    $$\Rightarrow -(\log_{e}x + 1) < 0$$
    $$\Rightarrow (\log_{e} x + 1) > 0$$
    $$\Rightarrow x > \dfrac {1}{e}$$
    Now for $$x > 1$$ we have,
    $$\Rightarrow f'(x) = \dfrac {x\log_{e}x}{x\log_{e}x}\times (\log_{e}x + 1)$$
    $$\Rightarrow f'(x) = (\log_{e}x + 1)$$
    $$\Rightarrow (\log_{e} x + 1) < 0$$
    This cannot be true as $$\log_{e} > 0$$ in this domain hence the inequality is never satisfied.
    Hence the function decreases in the range $$\left (\dfrac {1}{e}, 1\right )$$.

  • Question 6
    1 / -0
    The percentage error in the surface area of a cube with edge x cm, when the edge is increased by $$11\%$$ is _________.
    Solution
    Surface area of cube $$=$$ S $$=6x^2$$
    $$\therefore \dfrac{dS}{dt}=12x\dfrac{dx}{dt}$$
    Side of cube increase $$11\%$$.
    $$\therefore \dfrac{dx}{dt}=11\%$$ increment in side
    $$=\dfrac{11x}{100}$$
    $$\therefore \dfrac{dx}{dt}=12\left(\dfrac{11x}{100}\right)$$
    $$=6\left(\dfrac{22}{100}\right)x^2$$
    $$=6x^2\left(\dfrac{22}{100}\right)$$
    $$=22\%$$ in surface area
    $$\therefore$$ Surface area increase $$22\%$$.
  • Question 7
    1 / -0
    Let, $$f:A\rightarrow B$$ be an invertible function. If $$f(x)=2x^3+3x^2+x-1$$, then $$f'^{-1}(5)$$=
    Solution
    Given $$f$$  be an invertible function and $$f(x)=2x^3+3x^2+x-1$$.
    Then $$f'^{-1}(5)=\dfrac{1}{f'(x)}\forall x\in f(A)$$ such that $$f(x)=5$$.
    Now, $$f(x)=5$$ given only $$x=1$$ a real root, remaining are imaginary.
    Now, $$f'(x)=6(x^2+x)+1$$.
    $$\therefore $$$$f'^{-1}(5)=\dfrac{1}{f'(1)}=\dfrac{1}{13}$$
  • Question 8
    1 / -0
    The point on the curve $$y^{2}=x$$ where tangent makes $$45^{o}$$ angle with $$x-$$axis ?
    Solution
    $$ \dfrac{dy}{dx} = $$ Slope of the tangent at that point of the curve.

    Given curve is $$ x = y^2 $$
    Keep $$ y = a, \, then \,  x = y^2 $$ 
    point $$ (a^2, a) $$

    $$ \displaystyle \dfrac{dy}{dx} (y^2 - x) = 0 \dfrac{dy}{dx} = \dfrac{1}{2y} = \dfrac{1}{2a} = \tan(45^0) $$

    $$ \Rightarrow a= \dfrac{1}{2} \quad a^2= \dfrac{1}{4} $$

    point $$ \left(\dfrac{1}{4}, \dfrac{1}{2}\right) $$
  • Question 9
    1 / -0
    The tangent to $$\left( a{ t }^{ 2 },2at \right) $$ is perpendicular to X-axis at _____ point $$t\in R$$.
    Solution
    Here $$\left( x,y \right) =\left( a{ t }^{ 2 },2at \right) $$
    $$\therefore x=a{ t }^{ 2 };y=2at$$
    $$\therefore \cfrac { dx }{ dt } =2at;\cfrac { dy }{ dt } =2a$$
    $$\therefore \cfrac { dy }{ dx } \cfrac { dy/dt }{ dx/dt } =\cfrac { 2a }{ 2at } =\cfrac { 1 }{ t } $$
    Since, tangent is perpendicular to X-axis slope is undefined
    $$\therefore$$ $$t=0$$
    $$\therefore t=0$$
    $$\therefore \left( a{ t }^{ 2 },2at \right) =\left( 0,0 \right) $$
    Thus, tangent is perpendicular to X-axis at $$(0,0)$$
  • Question 10
    1 / -0
    Line $$y=x$$ and curve $$y=x^2+bx+c$$ touches at $$(1, 1)$$ then __________.
    Solution
    Given line $$l : y =x$$
    $$l : x-y=0$$
    $$\therefore$$ slope of line $$l=1$$
    Now $$y=x^2+bx+c$$
    $$\therefore \dfrac{dy}{dx}=2x+b$$
    $$\therefore \left(\dfrac{dy}{dx}\right)_{P(1, 1,)}=2(1)+b$$
    $$=2+b$$
    But slope of tangent of the curve $$=1$$.
    $$\therefore 2+b=1$$
    $$\therefore b=-1$$
    Now $$(1, 1)\in y=x^2+bx+c$$
    $$\therefore 1=1+b(1)+c$$
    $$\therefore b+c=0$$
    $$\therefore c=-b$$
    $$c=-(-1)$$
    $$\therefore c=1$$
    $$\therefore$$ We have $$b=-1$$ and $$c=1$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now