Let P(h,k) be the point in the plane of hyperbola $$xy=16=4^2$$
The equation of the normal at a point $$(4t, \dfrac {4} {t})$$ to the hyperbola $$xy=4^2$$ is
$$xt^3-yt-4t^4+4=0$$
if if passes through $$P(h,k)$$ then,
$$ht^3-yt-4t^4+4=0$$
$$ \Rightarrow 4t^4-ht^3+kt-4=0$$
this is a fourth degree equation in t. So, it gives 4 values of t, $$t_1,t_2,t_3,t_4$$ corresponding to each value of t there is a point on hyperbola such that the normal passes through $$P(h,k)$$.
let the 4 points be $$ A(ct_1, \dfrac{c}{t_1}) $$,$$ B(ct_2, \dfrac{c}{t_2}) $$,$$ C(ct_3, \dfrac{c}{t_3}) $$ and $$ D(ct_4, \dfrac{c}{t_4}) $$
such that normal at these points pass through $$P(h,k)$$.
Since $$t_1,t_2,t_3,t_4$$ are roots of equation (1).
Therefore,
$$t_1+t_2+t_3+t_4 = \dfrac{h}{c}=\dfrac{h}{4}$$.......(2)
$$ \sum t_1t_2 =0 $$.......(3)
$$ \sum t_1t_2t_3 = - \dfrac{k}{4} $$.........(4)
$$ t_1t_2t_3t_4 =-1 $$.......(5)
It s given that the sum of the slopes of the normals at A,B,C and D is equal to the sum of the coordinates of these points.
Therefore
$$t_1^2+t_2^2+t_3^2+t_4^2 = \dfrac{c}{t_1}+\dfrac{c}{t_3}+\dfrac{c}{t_3}+\dfrac{c}{t_4}=\dfrac{4}{t_1}+\dfrac{4}{t_2}+\dfrac{4}{t_3}+\dfrac{4}{t_4}$$
$$(t_1+t_2+t_3+t_4 )^2-2\sum t_1t_2=4\left ( \dfrac {\sum t_1t_2t_3}{t_1t_2t_3t_4} \right )$$
$$\Rightarrow \dfrac{h^2}{4}-2\times 0 = 4 \times \left ( \dfrac{\dfrac {-k}{4}} {-1} \right ) $$
$$\Rightarrow \dfrac{h^2}{4} = k $$
$$\Rightarrow h^2 = 16k$$
so the locus of $$(h,k)$$ is $$x^2=16y$$, which is a parabola