Self Studies

Application of Derivatives Test - 41

Result Self Studies

Application of Derivatives Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=min(|x|^{2}-5|x|,1)$$ then $$f(x)$$ is non differentiable at $$\lambda$$ points, then $$\lambda+13$$ equals
  • Question 2
    1 / -0
    Find the angle between tangent of the curve $$y = (x + 1) (x - 3)$$ at the point where it cuts the axis of $$x$$.
    Solution
    The curve $$y=(x+1)(x-3)=x^2-2x-3$$.........(1) cuts the axis of $$x$$ at $$(-1,0)$$ and $$(3.0)$$. These points are obtained by putting $$y=0$$ in the equation (1).
    Now the slope of the tangent to the curve (1) at $$(-1,0)$$ be $$(m_1)=\left.\dfrac{dy}{dx}\right|_{(-1,0)}=[2x-2]_{(-1,0)}=-4$$.
    Again the slope of the tangent to the curve (1) at $$(-1,0)$$ be $$(m_2)=\left.\dfrac{dy}{dx}\right|_{(3,0)}=[2x-2]_{(3,0)}=4$$.
    Now the angle between the tangents to (1) at those points be 
    $$\tan^{-1}\left(\dfrac{m_1-m_2}{1+m_1.m_2}\right)$$

    $$=\tan^{-1}\left(\dfrac{8}{15}\right)$$.
    So the required angle be $$\tan^{-1}\left(\dfrac{8}{15}\right)$$.
  • Question 3
    1 / -0
    If the curves $$y^2 = 4ax$$ and $$xy = c^2$$ cut orthogonally then $$\dfrac{c^4}{a^4} =$$
    Solution
    $$y^2=4ax, xy=c^2$$ cut orthogonally
    Let they intersect at $$(x_1, y_1)$$
    $$y^2=4ax$$
    $$2y\dfrac{dy}{dx}=4a$$
    $$\dfrac{dy}{dx}=\dfrac{2a}{y}$$
    $$\dfrac{dy}{dx}|_{(x_1, y_1)}=\dfrac{2a}{y_1}$$ …..$$(1)$$
    $$xy=c^2$$
    $$y+x\dfrac{dy}{dx}=0$$
    $$\dfrac{dy}{dx}|_{(x_1, y_1)}=\dfrac{-y_1}{x_1}$$ ……$$(2)$$
    From $$(1), (2)$$ $$(\because m_1m_2=-1)$$
    $$\dfrac{2a}{\not{y_1}}\times \dfrac{\not{-}\not{y_1}}{x_1}=\not{-}1$$
    $$x_1=2a$$
    From $$y^2=4ax$$
    $$y_1=\sqrt{8a^2}=2\sqrt{2}a$$
    $$xy=c^2$$
    $$x_1y_1=c^2$$
    $$2a(2\sqrt{2}a)=c^2$$
    $$\dfrac{c^2}{a^2}=4\sqrt{2}$$
    $$\dfrac{c^4}{a^4}=32$$.
  • Question 4
    1 / -0
    Number of critical points of the function $$\displaystyle f\left( x \right) =\dfrac { 2 }{ 3 } \sqrt { { x }^{ 3 } } -\dfrac { x }{ 2 } +\int _{ 1 }^{ x }{ \left( \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 } \cos { 2t } -\sqrt { t }  \right)  } dt$$ which lie in the interval $$\left[ -2\pi ,2\pi  \right] $$ is:
    Solution

  • Question 5
    1 / -0
    The equation of the tangent to the curve $$y = b{e^{ -\dfrac{x}{a}}}$$ at a point , where $$x=0$$ is 
    Solution
    $$y=b{ e }^{ \cfrac { -x }{ a }  }$$ when $$x=0\, y=b$$
    $$\dfrac { dy }{ dx } =\cfrac { -b }{ a } { e }^{ \cfrac { -x }{ a }  }$$ at $$x=0$$,   
    $$\dfrac { dy }{ dx } =\cfrac { -b }{ a } $$
    $$y=\cfrac { -bx }{ a } +c$$
    $$y=\cfrac { -bx }{ a } +b\\ \cfrac { y }{ b } =\cfrac { -x }{ a } +1\\ \cfrac { x }{ a } +\cfrac { y }{ b } =1$$
  • Question 6
    1 / -0
    The function $$y = \dfrac{2x^2 - 1}{x^4}$$ is
    Solution
    $$y = \dfrac{{2{x^2} - 1}}{{{x^4}}}$$
    $$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4x \times {x^4} - 4{x^3}\left( {2{x^2} - 1} \right)}}{{{x^8}}}$$
    $$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4{x^3} - 4{x^5}}}{{{x^8}}}$$
    $$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4{x^3}\left( {1 - {x^2}} \right)}}{{{x^8}}}$$
    $$\dfrac{{dy}}{{dx}} \geqslant 0\forall x \in \left[ { - 1,1} \right]$$
    So,this function is increasing  for $$x \in \left[ { - 1,1} \right]$$ and decreasing for other values of $$x$$
    Hence this function is neither increasing nor decreasing 
  • Question 7
    1 / -0
    The equation of the curve passing through $$(1,3)$$ whose slope at any point $$(x,y)$$ on it is  $$\dfrac { y }{ { x }^{ 2 } }$$ is given by
    Solution

    $$\dfrac{{dy}}{{dx}} = \dfrac{y}{{{x^2}}}\,\,\,\,\,\,\,\left( {given} \right)$$

    $$\int {\dfrac{{dy}}{{dx}} = \int {\dfrac{{dx}}{{{x^2}}}} } $$

    $$ \Rightarrow \log y =  - \dfrac{1}{x} + c$$

    $$ \Rightarrow y = {e^{ - \frac{1}{x} + c}}$$

    $$ \Rightarrow y = {e^{ - \frac{1}{x} + c}}$$

    $$ \Rightarrow y = {e^{ - \frac{1}{x}}},c$$

     since this curve is passing through point $$\left( {1,3} \right)$$

    so,    $$3 = {e^{ - \dfrac{1}{t}}}.c$$

             $$ \Rightarrow c = 3e$$

    therefore , eqn of the curve is 

             $$y = {e^{ - \dfrac{1}{x}}}.3e$$

             $$ \Rightarrow y = 3{e^{ - \dfrac{1}{x} + 1}}$$

             $$ \Rightarrow y = 3{e^{1 - \dfrac{1}{x}}}$$

     

  • Question 8
    1 / -0
    An equation of the tangent to the curve $$y=x^{4}$$ from the point $$(2,0)$$ not on the curve is:
    Solution
    let a,b be point on curve (x, y)

    $$ \displaystyle  b = a^4 $$ 

    $$ \displaystyle \frac{dy}{dx} (x^4) = 4x^3 = 4a^3 $$ 

    $$ \displaystyle (y- y_1) = m (x - x_1) \rightarrow$$ be tangent equation passes through (2, 0) 

    $$ \displaystyle (b-0) = 4a^3 (a-2) $$

    $$ \displaystyle a^4 = 4a^3 (a-2) $$

    $$ \displaystyle 3a^4 - 8a^3 = 0 $$

    $$ \displaystyle a^3 (3a - 8) = 0 $$
     
    $$ \displaystyle a= 0 \quad or \quad a= \frac{8}{3} \quad (0,0)$$ & $$\left[\dfrac{8}{3},\left(\dfrac{8}{3} \right)^4\right] $$ points on curve

    $$ \displaystyle b=0 \quad or \quad b= \left(\frac{8}{3}\right)^4 $$

    $$ \displaystyle (y - 0) = \frac{0-0}{2-0} (x-0)\Rightarrow y = 0 \rightarrow $$tangent (1)

    $$ \displaystyle \left[y-\left(\frac{8}{3}\right)^4\right] = \frac{(\frac{8}{3})^4_{-0}}{(\frac{8}{3})_{-2}} \quad (x - \frac{8}{3}) \rightarrow  $$tangent (2) 

  • Question 9
    1 / -0
    Let $$f:R\rightarrow  R$$  be a function defined by $$f\left(x\right)=Min \left\{x+1, \left|x\right|+1\right\}$$. Then which of the following is true?
    Solution
    Function has the minimum value of $$x+1$$ and $$\left|x\right|+1$$
    Hence $$f\left(x\right)$$ is differentiable everywhere.
  • Question 10
    1 / -0
    Find the points on the ellipse $$\dfrac{{{x^2}}}{4} + \dfrac{{{y^2}}}{9}=1$$ , on which the normals are parallel to the line $$3x-y=1$$.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now